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Metabolic engineering approaches 
for the biosynthesis of antibiotics
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Abstract 

Background  Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take 
for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) 
bacteria, making these infections increasingly difficult to treat in hospitals.

Main text  The discovery and development of new antibiotic has slowed, largely due to reduced profitability, 
as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this chal-
lenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable 
of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review 
recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient 
production of antibiotics, their derivatives, and analogs, along with representative examples.

Conclusion  These metabolic engineering and synthetic biology strategies offer promising potential to revitalize 
the discovery and development of new antibiotics, providing renewed hope in humanity’s fight against MDR patho-
genic bacteria.

Keywords  Antibiotics, Synthetic biology, Metabolic engineering, Actinomycetes, Biosynthetic gene cluster

Introduction
Antibiotics are one of the most revolutionary discov-
eries in the twentieth century that have significantly 
enhanced the lifespan of human beings. Before the dis-
covery of penicillin, which is the first antibiotic to be 
discovered, infectious diseases accounted for high mor-
bidity and mortality worldwide, resulting in a low aver-
age life expectancy of about 47  years [1]. One-third of 
Europe’s population perished due to pandemics, such 
as the bubonic plague, from 1347 to 1350. Additionally, 
until the early 1910s, infectious diseases accounted for 
25% of mortality, making them a major cause of death [2]. 

Penicillin was identified by Alexander Fleming through 
a serendipitous discovery that an active metabolite from 
the culture of Penicillium notatum inhibited the growth 
of a pathogen Staphylococcus. Afterward, the mortality 
rate due to infectious diseases has decreased sharply to 
less than 1%, and penicillin could save a lot of wounded 
soldiers from dying by infections during World War II 
[3]. Acknowledging the discovery of penicillin and the 
development of efficient bioprocesses for industrial-scale 
production, Fleming, Florey and Chain were awarded the 
Nobel Prize.

Ever since the first discovery of penicillin, numerous 
antibiotics have been discovered from nature, saving 
countless patients from infectious diseases. Antibiotics 
can be largely classified into chemicals [4], metal com-
plexes [5], and peptides [6]. Of particular, the major cat-
egories of chemical antibiotics are β-lactams, penicillins, 
cephalosporins, monobactams, tetracyclines, and qui-
nolones [7]. Antibiotics can also be classified according 
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to their mechanism of action (MoA) such as inhibition 
of DNA replication, RNA synthesis, protein synthesis, 
cell wall biosynthesis, cell membrane biosynthesis, or 
fatty acid synthesis. The different MoAs of antibiotics can 
serve as a starting point for the discovery of new antibiot-
ics (Table 1) [8].

While antibiotics are essential for treating infectious 
diseases, inevitable evolution of pathogens has led to the 
emergence of resistance towards antibiotics, mainly in 
hospitals. As a result of the emergence of these multid-
rug-resistant (MDR) bacteria, at least 1.27 million people 
have died globally, and in 2019, nearly 5 million deaths 
were reported. In the United States, over 2.8 million 
patients annually suffer from infections caused by MDR 
bacteria [9]. One of the major mechanisms for acquiring 
antibiotic resistance is horizontal gene transfer (HGT). 
Once genes involved in antibiotic resistance emerge, 
they can be easily and rapidly transferred to other bac-
teria through HGT [10]. Due to the lower profitability of 
antibiotic products resulting from the rapid emergence 
of new antibiotic-resistant pathogens, pharmaceutical 
companies have reduced their investment in antibiotic 
discovery, leading to a decreased pace of new antibiotic 
development. In particular, we are witnessing a severe 
natural antibiotic discovery void over the last couple of 
decades [11]. For these reasons, the development of novel 
strategies to discover and develop new antibiotics have 
been rapidly increasing.

This review focuses on antibiotic chemicals that can 
be produced from biological processes. Recent discov-
ery of natural antibiotics as well as metabolic engineering 
and synthetic biology strategies for the development of 
novel antibiotic derivatives are discussed. The readers are 
guided to some excellent reviews on the discovery and 
development of new antibiotics as provided here [11–16].

Discovery of antibiotics produced 
from actinomycetes
Importance of actinomycetes in antibiotics discovery 
and production
As one of the most complex habitats for diverse microor-
ganisms, soil provides a rich ecosystem known as the soil 
microbiome. Since the discovery of soil bacteria isolated 
from the roots of legumes [103], the microbial diversity 
within soil samples have been explored. It is estimated 
that the maximum number of operational taxonomic 
units (OTUs) in soil is 52,000 [104]. To survive and thrive 
in such a highly competitive environment, many soil bac-
teria have evolved to produce antibiotics that help them 
outcompete surrounding competitors [105]. Of particu-
lar, a significant proportion of antibiotics currently in use 
were isolated from actinomycetes, a group of filamentous 
gram-positive bacteria that contributes to the diversity of 

the soil microbial ecosystem. They are one of the prolific 
producers of natural products and antibiotics β-lactams, 
tetracyclines, rifamycins, aminoglycosides, macrolides, 
and glycopeptides. Therefore, they are widely utilized as 
chassis strains for the production of a wide array of anti-
biotics [106]. As shown in Fig.  1, new antibiotics were 
explosively discovered from actinomycetes during 1940s 
to 1960s, a period referred to as ‘the golden era of anti-
biotic discovery’ [107]. Despite the rapid decrease in the 
discovery of antibiotics from nature, the potential for 
new antibiotics still remains undiscovered within the 
genomes of actinomycetes (Fig. 1).

Among diverse strains within actinomycetes, the Strep-
tomyces species are reported to produce the most antibi-
otics (up to 55%) that were discovered from 1945 to 1978. 
With advancements in sequencing technologies, the cost 
of sequencing has become more affordable, enabling the 
analysis of diverse microbial genomes. The availability 
of a larger volume of genome sequence data for various 
Streptomyces species has led to the discovery of novel 
antibiotics that could not be directly identified from 
nature. For example, Streptomyces coelicolor, Streptomy-
ces avermitilis, Streptomyces griseus, and Saccharopolys-
pora erythraea each have more than 20 biosynthetic gene 
clusters (BGCs) encoding secondary metabolites in their 
genomes. This demonstrates the complex metabolic and 
regulatory pathways of Streptomyces species and high-
lights the wide range of secondary metabolites that can 
be produced in distinct cultural environments. There-
fore, the chance of discovery of new antibiotics from the 
diverse set of actinomycetes are still high. New Strepto-
myces species capable of producing new antibiotics are 
still being discovered from soil, as exemplified by the 
recent discovery of a new type of actinomycete, Strepto-
myces sp SM01 [108, 109]. Despite the high potential for 
discovering new antibiotics, industrial-scale production 
is challenging due to low titers, productivity, and yields 
[12].

Actinomycetes chassis strains for heterologous production 
of antibiotics
As natural producers of diverse antibiotics, actinomy-
cetes have been widely employed for the production of 
many antibiotics at the industrial-scale. While genetic 
manipulation of actinomycetes is challenging due to 
their GC-rich genomes and complex morphological and 
physiological characteristics [110], heterologous produc-
tion of antibiotics in traditional model microorganisms 
such as Escherichia coli and Saccharomyces cerevisiae are 
challenging due to their unfavorable metabolic and reg-
ulatory pathways for the expression of large BGCs con-
taining many incompatible genetic elements. Therefore, 
a number of actinomycetes strains showing favorable 
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characteristics for heterologous BGC expression have 
been selected as chassis strains for antibiotics produc-
tion. These chassis candidates have abundant pools of 
precursors and cofactors required for antibiotics pro-
duction, relatively well established genome engineer-
ing tools, simpler growth conditions, compatible gene 
expression elements, and high genetic element transfor-
mation efficiency. Such strains include S. coelicolor A3(2), 
Streptomyces albus, Streptomyces avermitilis MA-4680, S. 
albus J1074, Streptomyces lividans TK24, and Streptomy-
ces venezuelae [111, 112].

Among them, S. albus is one of the most commonly 
used chassis strains for the heterologous expression of 
diverse BGCs. The genome of S. albus (6.8 Mbp harbor-
ing 5.8  K genes in S. albus J1074) is one of the small-
est among Streptomyces species, which allows for 
higher genetic stability when introducing heterologous 
BGCs [113, 114]. Growing and screening actinomy-
cetes is a time-consuming and labor-intensive process, 

necessitating a rapid mutagenesis and screening strat-
egy. Therefore, atmospheric and room temperature 
plasma, an effective mutagenesis method, was combined 
with ribosome engineering in the natural salinomy-
cin producer S. albus, resulting in the generation of an 
overproducer that achieved twice the concentration of 
salinomycin [115]. S. albus has also been demonstrated 
as an efficient host for the production of complex ter-
penoids, making it particularly useful for the functional 
expression of tailoring enzymes including P450 for ter-
penoid modification [116]. To construct a more efficient 
chassis strain, 15 known BGCs were deleted, resulting 
in enhanced metabolic flux toward the desired products 
[117]. S. coelicolor is another important chassis strain for 
the efficient production of many secondary metabolites 
(e.g., actinorhodin, chloramphenicol, and congocidine). 
As with S. albus, BGCs encoding pathways for competing 
secondary metabolites were deleted, and mutations were 
introduced in genes encoding ribosomal components 

Fig. 1  The timeline of antibiotic discoveries approved for clinical use. Representative antibiotic classes are shown; left side of circle indicates 
the year of discovery for the first chemical belonging to the class. Right side of circle shows the proceeded development way for clinical use. 
Relevant standards are provided in parentheses. The ‘Golden era’ of antibiotic discovery (from the 1950s to the 1960s) is highlighted in yellow lines. 
Antibiotics are categorized as follows: green, natural antibiotics; blue, semi-synthetic antibiotics; orange, synthetic antibiotics
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(i.e., rpoB and rpsL) for the enhanced production of tar-
get chemicals [118]. Although engineering large BGCs in 
actinomycetes remains challenging, new synthetic biol-
ogy tools and strategies are continuously being developed 
to facilitate the engineering of these highly potent hosts 
for industrial-scale antibiotic production.

Methods for screening new antibiotics
Phenotype screening
Despite the abundance of bacterial species in soil, only a 
small fraction (less than 1%) can be successfully cultured 
in the laboratory [119]. As a result, only a few of many 
natural products discovered in nature have been identi-
fied as antibiotics. To discover and identify antibiotics 
among many natural products, a primitive method ‘phe-
notype screening’ has been employed in the early days. 
Phenotype screening is an exploratory process that iden-
tifies chemicals with antibiotic properties by testing the 
viability of pathogens when treated with candidate chem-
icals, based on their observable effects on biochemical 
activities or MoA, without prior knowledge of the targets 
[120, 121].

Soil microbiome has been the primary source of antibi-
otics discovery, but recently, the human microbiome has 
been gaining interest due to the high chance of encoun-
tering pathogen invasions in the respiratory track. For 
example, a non-ribosomal peptide (NRP) antibiotic, lug-
dunin, was discovered by phenotype screening from 90 
nasal Staphylococci. Staphylococcus lugdunensis IVK28 
found in the human nose was identified to produce lug-
dunin which can kill a representative pathogen Staphylo-
coccus aureus [122].

Phenotypic screening based on target pathogen viabil-
ity does not provide any insight into the biochemical 
targets of antibiotic candidates. Therefore, antimicro-
bial activity screening has shifted from viability tests to 
specific biochemical target inhibition approaches [123]. 
However, when the target pathogen (e.g., Mycobacte-
rium tuberculosis) is difficult to test in the lab due to 
slow growth and biocontainment regulations, the target 
essential surrogate E. coli (TESEC) platform can be used 
instead [124]. The TESEC platform is constructed by the 
deletion of an essential gene in E. coli and replacing it 
with a functional analog from the target pathogen, link-
ing bacterial growth to the activity of the target enzyme. 
In this study, high-throughput screening of antibiotic tar-
gets was performed in a TESEC platform for M. tuber-
culosis alanine racemase, leading to the identification of 
benazepril as an effective antibiotic against M. tubercu-
losis [124]. As such, phenotypic screening is still being 
actively used to discover new antibiotics as well as pro-
viding insights into the new MoA of new antibiotics [14].

Antibiotic discovery based on mechanisms of action
As discussed above, determining the MoA of an antibi-
otic is much more challenging than simple discovery of 
an antibiotic [125]. Some of the major biochemical tar-
gets of antibiotics are as follows: essential elements for 
cell survival, cell wall and cell membrane synthesis, cell 
membrane permeability, electron transport, purine and 
purine nucleotide synthesis, DNA synthesis, and protein 
synthesis [126]. In this subsection, methods for identify-
ing MoAs of antibiotics are discussed.

Bacterial cytological profiling
As a rapid and powerful method for identifying the cel-
lular pathways affected by antibiotics, bacterial cytologi-
cal profiling (BCP) can distinguish between inhibitors 
that impact different cellular pathways as well as differ-
ent targets within the same pathway [125]. Therefore, 
when similar imaging results are obtained by BCP when 
two different antibiotics are compared, their MoAs can 
be considered to be similar [127]. During BCP, bacteria 
are visualized through fluorescent dye staining methods 
such as DNA staining with DAPI, SYTOX, and ethidium 
bromide (EtBr), cell membrane staining with FM4-64, 
and cell wall staining with crystal violet and calcofluor 
white. For example, BCP was employed to identify an 
antibiotic peptide MciZ, which was shown to target FtsZ, 
a cell mitosis protein, in Bacillus subtilis. Upon treatment 
with MciZ, BCP shows that B. subtilis cells have shown 
phenotypes (e.g., undivided cells and abnormal Z-ring 
distribution) that could also be observed by treatment of 
FtsZ inhibitors. The loss of the Z-ring can be observed by 
the length of the DAPI-stained nucleoid, which becomes 
longer to fill in the area where the Z-ring is lost [128, 
129].

In another example, BCP was employed to elucidate 
the MoA of the analogue of pan-assay interference com-
pounds (PAINS), previously known to contain rhoda-
mine. BCP, FM-6–64, SYTOX-green, and DAPI were 
employed as fluorescent markers. Upon treatment with 
the PAINS analogue, inhibition of cell wall synthesis 
and DNA replication was observed, achieved by repress-
ing thymidylate kinase which is an enzyme responsible 
for synthesizing pyrimidine DNA bases. This inhibition 
manifested through filamentation and chromosomal 
replication defects, as indicated by fluorescence of BCP 
[130].

Flow cytometry
Flow cytometry is a tool that can quickly and accurately 
analyze individual microbial cells, even if they cannot be 
cultivated in the laboratory. Flow cytometry allows the 
analysis of various chemical and physical phenotypes 
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such as cellular type, viability, and gene expression using 
fluorescent markers [131]. For example, flow cytometry 
was employed to unveil the MoA of labdane diterpenes 
by labeling target bacteria with fluorescence to assess via-
bility [132].

Flow cytometry is also useful for distinguishing live and 
dead cells by using SYTO9 which stains only live cells 
and PI which stains only dead cells. Live/dead cell assay 
by flow cytometry was used to find the best combinations 
of different antibiotics to enhance the antibacterial prop-
erty. The combination of antimicrobial peptides, sphistin 
and sph12-38, with antibiotics such as azithromycin and 
rifampicin, led to 85.93% reduction in viability of a repre-
sentative gram-negative pathogen Pseudomonas aerugi-
nosa [133].

CRISPRi
Clustered regularly interspaced short palindromic 
repeats interference (CRISPRi) employs a catalytically 
inactive Cas9 endonuclease to specifically repress the 
transcription of target genes, guided by single guide 
RNAs (sgRNAs) [134]. CRISPRi is employed to reveal 
the MoA of an antibiotic by repressing the antibiotic 
target gene candidates within a pathogen. Since the tar-
get genes are mostly essential genes in bacteria, their 
decreased expression would result in very low cell viabil-
ity. For example, the MoA of peziculone was analyzed 
using CRISPRi. When genes involved in cell wall synthe-
sis (i.e., tagB and murB), biofilm formation, and essen-
tial metabolic pathways (e.g., fatty acid biosynthesis and 
protein biosynthesis) were knocked down, the antibiotic 
sensitivity of S. aureus was increased [135]. In another 
example, the target gene of irresistin-16, a derivative of 
SCH-79797, was identified through both BCP and CRIS-
PRi [136]. When essential genes involved in folate metab-
olism, dfrA (encoding dihydrofolate reductase) and folC 
(encoding dihydrofolate synthase), are knocked down in 
B. subtilis, the cell viability was observed to be highly sen-
sitive to antibiotics treatment. Furthermore, irresistin-16 
was shown to disrupt membrane integrity, as evidenced 
by BCP and flow cytometry [136]. As such, the MoA of 
antibiotics can be effectively elucidated by the combina-
tions of different approaches.

Proteomics
Proteomics is a method for studying complex protein 
mixtures, such as bacterial lysates or clinical tissue sam-
ples containing several thousands of proteins. One of the 
most fundamental methods of analyzing the proteome 
of a bacteria is two-dimensional (2D) gel electropho-
resis. Another method is iTRAQ®, which relies on the 
tagging of proteolytically cleaved peptides from differ-
ent samples, with each sample conjugated to a different 

tag. The specific proteins found by either 2D gel electro-
phoresis or iTRAQ® can be subsequently elucidated and 
quantified by liquid chromatography-mass spectrometry 
(LC–MS) or matrix-assisted laser desorption-ionization 
time-of-flight mass spectrometry (MALDI-TOF/MS), 
leading to the investigation of cellular pathways affected 
by antibiotic treatment [137, 138]. For instance, 2D 
gel electrophoresis and MS were employed to observe 
changes in protein production in Acinetobacter bauman-
nii following treatment with the antibiotic sulbactam. As 
a result, the levels of essential proteins for cell survival, 
including the ATP-binding-cassette (ABC) transporter as 
well as the 30S and 50S ribosomal subunit proteins, were 
found to be reduced [139]. Also, the proteomic change 
of S. aureus after lactobionic acid treatment was inves-
tigated using iTRAQ®. The analysis of peptides tagged 
with the reporter marker iTRAQ® through LC–MS/MS 
revealed disruptions in the cell wall and the membrane 
integrity, as well as altered ABC transporter levels and 
cellular energy metabolism [140]. Such proteomic analy-
sis will be useful to provide important insights about the 
MoA of new antibiotics.

Discovery and activation of cryptic BGCs 
for the biosynthesis of new antibiotics
Isolation of unculturable bacteria and recovery of products
As aforementioned, a significant number of unculturable 
bacteria remain elusive and have not yet been compre-
hensively analyzed. Many of these microorganisms are 
expected to be valuable for our lives since some of them 
could recycle various elements (e.g., carbon, nitrogen, 
and metals) from natural resources, and the others could 
produce a variety of natural products with unprecedented 
pharmaceutical activities. Therefore, it is important to 
isolate and recover these bacteria in order to elucidate 
the largely unexplored space of antibiotics from nature by 
reconstruction of the natural habitat as much as possible. 
This involves providing suitable stimuli such as tempera-
ture, osmosis, host conditions, chemical inducers or pre-
cursors, and specific interactions with other bacteria in 
the surroundings [141]. However, no matter how meticu-
lously the culture environment is adjusted, many bacteria 
still fail to grow, making it challenging to point out the 
exact problem.

Influence and stimulation of neighboring bacteria can 
be an important factor for growing some unculturable 
bacteria. These neighboring bacteria can stimulate the 
growth of target bacteria by providing diffusible growth 
factors (e.g., siderophores, cAMP, and acyl-homoserine 
lactones) or through physical contact, although the exact 
mechanisms remain largely unknown. Therefore, co-
culture with other bacteria found from the same envi-
ronment might allow the target bacteria to grow in the 
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laboratory conditions. For example, Bacillus marisflavi 
requires a modified acyl-desferrioxamine siderophore 
as the growth factor produced from Bacillus megate-
rium, a helper bacterium inhabiting the same environ-
ment. This facilitated the utilization of oxidized iron as 
an essential nutrient, effectively regulating cell homeo-
stasis and thus promoting growth of B. marisflavi [142]. 
In another study, co-culture of Micromonospora sp. with 
Rhodococcus sp. resulted in the production of keycin, a 
poly-nitroglycosylated anthracycline [143]. It turned out 
that the anthracycline backbone was first biosynthesized 
by Micromonospora sp., which was then modified to ben-
zoxocin by Rhodococcus sp., and then further to keycin 
[143]. A notable feature of keycin is its distinct mecha-
nism apart from that of most anthracyclines. However, 
the exact mechanism of keycin acting as an antibiotic 
remains elusive. Co-culture of fungal species can be also 
useful, as exemplified by the co-culture of two Aspergillus 
species from mangrove could produce a novel compound 
called aspergicin, which showed antibacterial activities 
towards Bacillus proteus, E. coli, S. aureus, and B. subtilis 
[144].

However, co-culture also has a number of limitations, 
including challenges in culturing helper bacteria, difficul-
ties in precisely understanding bacterial interactions, and 
elucidation of suitable bacterial co-culture pairs. This led 
to the development of the isolation chip (iChip) which 
is a multichannel device that creates multiple sections 
divided by semi-permeable membranes in which only a 
single cell can be isolated. When iChips are buried in the 
soil, a single bacterial cell can be isolated in each section 
in the natural habitat, which can then be recovered in the 
lab. As bacteria are grown in the natural habitat through 
iChip, a striking 50% of all bacteria from a soil sample 
could be isolated [145]. As a case study, teixobactin, a 
newly discovered NRP antibiotic produced by Eleftheria 
terrae, was identified using the iChip method. Teixobac-
tin shows significant bactericidal activity against MDR 
gram-positive pathogens without any resistance reported 
so far [146]. The authors are guided to additional stud-
ies on teixobactin in the following literature [147–150]. 
Interestingly, a new NRP antibiotic clovibactin could 
also be discovered from the same bacterial species E. ter-
rae subspecies carolina [148]. Clovibactin was shown to 
block cell wall biosynthesis, with an unusual structure 
and MoA, showing no sign of resistance development as 
well.

Discovery of cryptic BGCs and genome mining
Despite efforts to culture “unculturable” bacteria, a 
majority of them still cannot be recovered in the lab. 
In this regard, metagenomics can be employed to com-
prehensively analyze large amounts of genomic data 

obtained directly from environmental samples, without 
the need to culture these elusive microorganisms [151]. 
The rapid advancement of sequencing technologies has 
enabled the accumulation of huge metagenomic data 
that include a significant volume of BGCs for secondary 
metabolite biosynthesis. As a representative example, 
S. coelicolor A3(2) was found to have about 7,825 genes 
involved in > 20 BGCs [108]. Also, 17 BGCs were identi-
fied in a marine actinomycete Salinispora tropica, most 
of which were novel, including the one responsible for 
the production of a polyene macrolactam salinilactam A 
[152]. The development of next-generation sequencing 
(NGS) technologies, along with recent advances in nano-
pore sequencing and single-cell sequencing, has enabled 
the rapid sequencing of the genomes of many Strepto-
myces strains. This has led to the discovery of a signifi-
cant number of cryptic genes which are not expressed 
under normal culture conditions. In nature, these cryp-
tic genes are activated only under specific environmen-
tal conditions to assist the survival of host cells in diverse 
environments.

To elucidate the cryptic genes and BGCs from 
metagenomic data, metagenome mining tools such as 
MG-RAST, IMG/M, EBI Metagenomics, SILVAngs, 
MEGAN, QIIME, and Mothur can be employed [153, 
154]. For instance, metagenomic analysis was used to 
predict the genes encoding polyketide synthases and 
associated enzymes, leading to the discovery of new pol-
yketides that potentially harbor antibacterial properties 
[151, 155, 156]. The antiSMASH (antibiotics & Secondary 
Metabolite Analysis Shell) pipeline was first developed 
in 2011 and is currently the most widely used bioinfor-
matics tool for the prediction of BGCs and their possi-
ble products [157]. For example, antiSMASH was used to 
predict the cryptic BGCs within Streptomyces globisporus 
SP6C4, a bacterial strain known for its use in suppress-
ing plant diseases. As a result, 15 BGCs were predicted, 
among which some were shown to produce secondary 
metabolites with antibacterial activities, providing valu-
able information for agricultural applications [158]. The 
antiSMASH pipeline can also be employed to compre-
hensively screen BGCs from a large volume of database. 
For example, all the high quality bacterial genomes from 
GenBank (~ 3000 as of 2014) were analyzed using ant-
iSMASH to search NRPS-encoding gene clusters. As a 
result, 96 previously unidentified NRPs were predicted to 
be produced by the identified NRPSs, most of which were 
C-terminally cyclized peptides. Based on the common 
structural properties of these peptides, 171 synthetic 
peptides were designed, nine among which exhibited 
antibacterial activity against the ESKAPE pathogens (the 
group of major MDR bacteria including Enterococcus fae-
cium, S. aureus, Klebsiella pneumoniae, A. baumannii, P. 
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aeruginosa and Enterobacter cloacae) and M. tuberculo-
sis [159]. In another example, an NRP-PK hybrid, epifa-
din, was discovered through the isolation of the BGC by 
analyzing the genome of the nasal commensal bacterium 
Staphylococcus epidermidis IVK83 using antiSMASH 
[160]. Other metagenome mining tools are also available 
such as BAGEL [161], PRISM [162], RiPPER [163], and 
TOUCAN [164]. Such approaches enable the discovery 
of new antibiotics from the metagenomic data without 
the need to directly culture the bacteria.

Activation of cryptic BGCs
Genetic‑level activation
After the elucidation of cryptic BGCs and the predicted 
products, activation of the cryptic BGCs from the host 
strain is required to produce, recover, and analyze the 
resulting chemicals. A representative method of activat-
ing BGCs in the native hosts is the insertion of strong 
constitutive promoters (e.g., ermE* and kasO*) in front 
of the BGCs by CRISPR/Cas9. For instance, in Strep-
tomyces viridochromogenes, the insertion of the kasO* 
promoter upstream of the BGC encoding a type II pol-
yketide synthase (PKS) resulted in the production of a 
previously unknown pentangular type II polyketide with 
a dihydrobenzo[α]naphthacenequinone core [165].

Other than direct activation of the biosynthetic path-
way genes, pathway regulators can be employed to 
manipulate the expression of cryptic genes, as exempli-
fied in Streptomyces chattanoogensis L10 [166]. By the 
overexpression of genes encoding three biosynthetic 
pathway regulators (ChaK, ChaK1, and ChaI) in S. chat-
tanoogensis, the cryptic angucycline gene cluster could 
be activated, resulting in the successful production of 
new antibiotics, chattamycin A and B [166]. The large 
ATP-binding regulator (LAL) regulator family plays an 
important role in regulating the expression of genes 
related to type I modular PKSs, and thus can be found 
within the BGCs of various polyketide antibiotics such 
as avermectin, salinomycin, and staurosporine [167]. In 
another example, overexpressing astG1 which encodes a 
LAL family regulator in Streptomyces sp. XZQH13 found 
from the cryptic ansatrienin BGC led to the production 
of hydroxymycotrienins A and thiazinotrienomycin G, 
previously unachievable ansatrienin antibiotics [168].

Another interesting approach is the deletion of BGCs 
responsible for the production of already known anti-
biotics instead of reinforcing the pathways related to 
unknown compounds [169]. For example, genes respon-
sible for the production of two of the most frequently 
rediscovered antibiotics, streptothricin and streptomy-
cin, were deleted from the genomes of 11 actinomycetes. 
As a result, previously unreported variants of antibiotics 

including thiolactomycin, amicetin, phenanthroviridin, 
and 5-chloro-3-formylindole could be discovered.

Activation of the cryptic BGC using chemical elicitors
Other than through direct activation of the cryptic BGCs 
at the genetic-level, they can be sometimes activated 
upon the addition of specific chemicals due to the com-
plicated metabolic and regulatory pathways of actino-
mycetes. When bacteria are exposed to antibiotics at 
sub-inhibitory concentrations, a new secondary metabo-
lite pathway can be activated to generate new products. 
This induction of BGCs mainly occurs at the transcrip-
tional level and can even lead to various gene expression 
changes that can lead to many phenotypic changes other 
than those related to secondary metabolite production. 
For example, an antibiotic streptomycin was shown to 
induce the expression of a cryptic type II PKS-related 
BGC in Microbispora sp. BCCAGE54, leading to the pro-
duction of tetarimycin B [170]. In addition, alteration of 
nutrient addition in the culture medium can lead to the 
induction of cryptic BGCs. A notable example is the dis-
covery of coelichelin produced from S. coelicolor A3(2) 
by culturing the strain in an iron-deficient condition 
[171]. Since coelichelin serves as a siderophore, which 
helps the host cell to acquire iron, culturing the strain in 
the absence of iron would have led to the enhanced pro-
duction of coelichelin to help the cell survive in an iron-
deficient environment.

Some metabolites produced from neighboring micro-
organisms can also act as chemical elicitors for cryp-
tic BGCs. Therefore, co-culture of multiple bacterial 
strains could lead to the observation of unprecedented 
metabolites that could not have been observed by cul-
turing each bacteria individually. As an example, when 
Micromonospora sp. UR56 and Actinokineospora sp. 
EG49 were co-cultured, a number of new metabolites 
that were not produced by individually culturing the two 
bacterial strains could be found [172]. Remarkably, all of 
these products were found to have come from cryptic 
BGCs that would have been hidden until induced by the 
co-culture. Among the new chemicals, dimethyl phena-
zine-1,6-dicarboxylate, phencomycin, and tubermycin 
demonstrated antibacterial activities [172].

Reconstruction of the cryptic BGCs
For cryptic genes that are difficult to be expressed in 
native hosts, the genes can be cloned and introduced 
into heterologous hosts to identify the products that the 
BGCs can produce. Since it is often difficult to express 
actinomycetal BGCs in widely used model microorgan-
isms such as E. coli or S. cerevisiae, a number of Strep-
tomyces chassis strains (e.g., S. coelicolor, S. lividans, 
and S. albus) have been used for facile introduction of 
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actinomycetal cryptic BGCs. For example, as the cryp-
tic ansamycin BGC (type I PKS) could not be activated 
in the marine actinomycete Streptomyces seoulensis A01 
in the laboratory, the cryptic BGC cloned into a plasmid 
and was introduced in other Streptomyces hosts. As a 
result, successful heterologous production of ansaseo-
mycins A and B was achieved using the actinomycetal 
chassis strains S. lividans SBT18 and S. coelicolor M1146 
[173]. When the expression of cryptic BGCs in heterolo-
gous hosts is combined with genome mining tools (e.g., 
antiSMASH) for predicting cryptic BGCs from metagen-
omic data, the speed of discovering new antibiotics can 
be significantly enhanced.

Enhancing the production levels of antibiotics
Enhanced production of antibiotics by engineering 
actinomycetes
As previously discussed, actinomycetes are efficient 
microbial cell factories for the production of diverse anti-
biotics despite the difficulties of engineering. To facilitate 
the engineering process and to resolve such difficulties, 
several metabolic engineering and synthetic biology 
tools and strategies have been developed [174]. One of 
the most useful genome engineering tools is the CRISPR 
system [175, 176]. CRISPR-based genome engineering 
has allowed insertion and deletion of gene fragments, 
as well as editing of DNA and RNA bases. CRISPR has 
been recently adopted for facile engineering of actinomy-
cetes to enhance their production capacities in order to 
better exploit these remarkable antibiotic producers. For 
instance, the genome of S. erythraea NRRL 23338, which 
produces erythromycin (a macrolide produced by type I 
PKS), was engineered by the CRISPR-Cas9 system [177]. 
As the expression levels of the ery cluster encoding the 
tailoring enzymes were low, which served as a significant 
bottleneck for erythromycin production, strong promot-
ers were inserted in multiple loci within the ery cluster to 
enhance the transcription levels of the bottleneck genes. 
As a result, the erythromycin production was enhanced 
by six-fold when compared to the wild type strain [177]. 
Thus, the CRISPR-Cas9 system can be used to overex-
press bottleneck genes to better streamline the metabolic 
flux towards the products. CRISPR-Cas9-based genome 
engineering is also useful for the deletion of major anti-
biotic pathways in order to redirect the metabolic flux 
towards other minor secondary metabolites, which would 
lead to previously undiscovered antibiotics. For example, 
the BGCs for the production of streptothricin or strepto-
mycin were deleted in 11 actinomycete strains by using 
CRISPR-Cas9, leading to the discovery of previously 
unreported antibiotics including tiolactomycin, amicetin, 
and phenanthroviridin [169]. In addition, CRISPR can be 
used together with genetic elements of bacteriophage for 

the integration of large DNA fragments. For instance, the 
attachment and integration (Att/Int) system from bac-
teriophage ΦC31 was used together with CRISPR-Cas9 
to integrate multiple copies of the large pristinamycin II 
BGC into the genome of Streptomyces pristinaespiralis 
[178]. This led to the production of 2.24 g/L of pristina-
mycin II by shake flask culture [178].

To avoid DNA double-strand breaks as well as the 
cytotoxic effects of Cas9, CRISPR-base editing system 
(CRISPR-BEST) was developed and was showcased in a 
non-model actinomycete Streptomyces collinus Tü365 
[179]. The CRISPR-BEST system having a cytidine deam-
inase could manipulate the kirromycin biosynthetic path-
way by inactivating the kirN gene by introducing stop 
codons within the gene. More recently, an improved base 
editing system (eSCBE3-ng-Hypa) with improved perfor-
mance towards high GC DNA sequences, relaxed proto-
spacer adjacent motif (PAM) requirement, and minimal 
off-target effects was developed in Streptomyces species 
[180]. The eSCBE3-ng-Hypa system was used to inacti-
vate the competitive pathways within the ave BGC for 
enhanced production of avermectin B1a in S. avermitilis 
[180].

Given the complex metabolism and physiology of 
actinomycetes, it is often challenging to develop engi-
neering strategies to enhance antibiotic production in 
these strains. Therefore, understanding the relationship 
between different metabolic and regulatory pathways 
and antibiotic production through omics analysis can 
help increase the production of diverse antibiotics. For 
example, comparative transcriptomic analysis was per-
formed for Actinosynnema pretiosum ATCC 31280, an 
ansamitocin P-3 (AP-3) producer, to elucidate the cause 
for excessive mycelial fragmentation during fermenta-
tion [181]. As a result, the APASM_4178 gene encod-
ing a subtilisin-like serine peptidase was identified to be 
responsible for mycelial fragmentation. As mycelial frag-
mentation had a negative impact on the yield of AP-3, the 
APASM_4178 gene led to increased cell growth as well as 
increased production of AP-3 by 43.65% [181]. In another 
study, metabolomic and transcriptomic analysis of S. 
avermitilis revealed that triacylglycerol (TAG) accumu-
lated during cell growth was degraded during stationary 
phase, leading to increased metabolic flux towards acetyl-
CoA, reducing equivalents, ATP, and thus polyketides 
[182]. As the sco6196 gene was shown to be responsible 
for the degradation of TAG, overexpression of the gene in 
an industrial S. avermitilis A56 strain resulted in signifi-
cantly enhanced production of avermectin B1a (9.31 g/L) 
in a 180-m3 fermenter [182]. Another method of enhanc-
ing the production of antibiotics is co-culture of several 
bacterial strains to activate core BGCs. Co-culture of 
Vibrio coralliilyticus and Photobacterium galatheae has 
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led to increased production of andrimid and holomycin 
by 4.3 and 2.7-fold, respectively, when compared to those 
produced by individually culturing each bacterial strain 
[183].

Antibiotic production from heterologous model 
microorganisms
Despite the capability of actinomycetes for the produc-
tion of high-level antibiotics, they show several prob-
lems including difficulties in high-cell-density culture, 
cumbersome genome engineering, and complex meta-
bolic and regulatory networks. Therefore, model micro-
organisms including E. coli and S. cerevisiae have been 
employed for the heterologous production of antibiot-
ics. E. coli is especially known for its well-established 
genome-scale metabolic models, capability for high-cell-
density culture, abundant genome engineering tools, 
and high growth rate [184, 185]. A classical example of 
antibiotics produced by metabolically engineered E. coli 
is erythromycin, which involves a type I PKS. By intro-
ducing dexoyerythronolide B synthase (DEBS) from S. 
erythraea into E. coli, 6-deoxyerythronolide (6-dEB), 
an aglycone precursor of erythromycin, was produced 
for the first time by a heterologous host [186]. Further 
increasing the metabolic flux towards the precursors 
(acetyl-CoA, propionyl-CoA, and methylmalonyl-CoA) 
as well as overexpression of genes encoding deoxysugar 
glycosyltransferase resulted in 4  mg/L of erythromycin 
A production [187]. Such examples showcase the capa-
bility of E. coli to produce macrolide antibiotics which 
require a mega-sized assembly line of enzymes such as 
type I PKS or NRPS. Compared with type I PKS, type II 
PKS had been rather difficult to express in heterologous 
hosts [188]. The recent identification of a type II PKS 
from Photorhabdus luminescens led to successful produc-
tion of aromatic C16 polyketides in E. coli [189, 190]. E. 
coli capable of heterologous production of aromatic C16 
polyketides was particularly useful for the production of 
non-natural derivatives, which can lead to the develop-
ment of unprecedented new antibiotics. Carbapenem, a 
β-lactam antibiotic, could be also produced in E. coli by 
the introduction of the carABCDE BGC from Pectobacte-
rium carotovorum as well as the removal of key feedback 
inhibition from glutamate 5-kinase (ProB) responsible 
for the conversion of glutamate to glutamyl 5-phosphate 
[191].

Other prokaryotic hosts have also shown to be suita-
ble for antibiotics production. For example, Corynebac-
terium glutamicum is a gram-positive bacterium 
capable of efficiently producing food-grade products, 
but has suffered from reduced cell growth when sup-
plemented with propionate, a precursor for propionyl-
CoA and methylmalonyl-CoA. To address this issue, 

adaptive laboratory evolution was employed to improve 
the fitness of the host for polyketide production in the 
presence of propionate, resulting in an 18-fold increase 
in germicidin production compared to the wild-type 
C. glutamicum [192]. Pseudomonas species can also 
be employed for antibiotic production due to its high 
tolerance towards toxic chemicals, efficient metabolic 
pathway towards aromatic compounds, well-estab-
lished genome engineering tools, as well as adaptability 
to industrial processes [193]; some Pseudomonas spe-
cies are natural producers of polyketide antibiotics such 
as 2,4-diacetylphloroglucinol [194] or mupirocin [195]. 
As malonyl-CoA is a central metabolite for the produc-
tion of a number of categories of secondary metabolites 
including polyketides and phenylpropanoids, Pseu-
domonas taiwanensis was engineered by the deletion of 
competing pathways, replacing the native 3-ketoacyl-
ACP synthase II with that from Pseudomonas putida, 
and overexpression of acetyl-CoA carboxylase from C. 
glutamicum [196]. This resulted in the enhanced pro-
duction of flaviolin, pinosylvin, and resveratrol, and the 
same strategy can also be applied to the production of 
antibiotics derived from malonyl-CoA.

Another important heterologous microorganism 
model for antibiotic production is S. cerevisiae due to its 
capability of functional expression of tailoring enzymes 
and well-established genome engineering tools, as well 
as adaptability to industrial application [197]. For exam-
ple, penicillin, naturally produced by NRPS in Penicillium 
chrysogenum, was produced in S. cerevisiae. Co-expres-
sion of NRPS and NRPS activator genes (i.e., pcbAB and 
npgA) along with three additional genes (i.e., pcbC, pclA, 
and penDE) from P. chrysogenum resulted in the produc-
tion of 70 ng/mL of benzylpenicillin production [198]. In 
another study, a type III PKS from Aloe arborescens was 
introduced in S. cerevisiae for the production of dihy-
drokalafungin, a precursor of the antibiotic actinorho-
din [199]. Along with S. cerevisiae, the non-conventional 
yeast strain Yarrowia lipolytica can also be used for anti-
biotic production due to its ability to efficiently produce 
proteins, its high flux towards acetyl-CoA, and its capac-
ity to accumulate high levels of lipids, which can dissolve 
hydrophobic chemicals at high concentrations [200]. 
Leveraging these advantages, Y. lipolytica was engineered 
by implementing a pyruvate bypass pathway and over-
expressing PEX10, which is associated with β-oxidation, 
leading to a substantial production (35.9 g/L) of triacetic 
acid lactone (TAL) from glucose [201]. TAL produced 
from Y. lipolytica can be easily converted into the antibi-
otic pogostone and its analogs through a one-step chemi-
cal conversion [202]. The examples discussed above 
highlight the potential of engineering model microorgan-
isms for efficient production of antibiotics, providing a 
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viable response to the current lack of high-performance 
antibiotic production platforms.

Diversification of antibiotics
Engineering PKSs and tailoring enzymes
Diversification of antibiotics by addition of functional 
groups, modification of the carbon skeleton, and other 
structural alterations, is an effective strategy for devel-
oping new antibiotics with unprecedented properties to 
combat emerging MDR pathogens [203]. Analogs and 
derivatives generated through diversification can also 
facilitate the discovery of novel MoA for treating MDR 
bacteria or even overcoming physical barriers, such as 
biofilms. To diversify antibiotics, chemical or biochemi-
cal reactions are applied to lead compounds. While 
chemical reactions have been widely employed for this 
purpose, the structural complexity of many antibiot-
ics, such as fused polycyclic carbon skeletons and mul-
tiple stereocenters, poses significant challenges for 
chemical synthesis [204]. Sensitive functional groups 
further restrict reaction conditions to prevent degrada-
tion or loss of efficacy. Therefore, synthetic biology has 
emerged to engineer enzymes and microbial strains that 
can efficiently produce diverse analogs and derivatives of 
antibiotics.

To produce diverse derivatives of a lead compound, 
tailoring enzymes are often employed to add various 
functional groups. A notable example is the biosyn-
thesis of novel anthraquinones, a group of polycyclic 
aromatic polyketides, by the introduction of tailoring 
enzymes in addition to a type II PKS in E. coli [189]. In 
this study, a type II minimal PKS from P. luminescens 
that are phylogenetically close to E. coli fatty acid syn-
thases was employed for the efficient biosynthesis of 
the carbon chain of C16 aromatic polyketides in E. coli. 
The introduction of an O-methyltransferase to the PKS-
harboring strain resulted in the production of a novel 
methylated anthraquinone termed neomedicamycin, 
and the introduction of a halogenase to the same strain 
resulted in the production of a novel chlorinated anth-
raquinone termed neochaetomycin (Fig.  2A). Particu-
larly, since chlorinated anthraquinones are reported to 
show enhanced antimicrobial activities as exemplified 
by chlorinated emodin [205], the production of halogen-
ated polyketide derivatives demonstrate the potential 
for the development and production of new antibiotics. 
Glycosylation is another important reaction for improv-
ing the property of a lead compound. For example, the 
introduction of a glycosyltransferase YjiC in an E. coli 
strain harboring a type I iterative PKS capable of produc-
ing an antimicrobial anthraquinone emodin, resulted in 
the production of an emodin glucoside [206]. The glu-
coside showed enhanced solubility and stability when 

compared with those of emodin. Another example is the 
production of glycosylated erythromycin derivatives. To 
achieve this, a promiscuous glucosyltransferase EryBV 
was employed to attach deoxysugars to 6-dEB, resulting 
in the production of glycosylated erythromycin deriva-
tives [207]. Additionally, ErtBV was capable of glycosylat-
ing 6-dEB using diverse deoxysugars including D-allose, 
D-forosamine, L-noviose, and D-vicenisamine, allowing 
the production of diverse 6-dEB glycosides [208]. Such 
‘plug-and-play’ mode of biosynthesis is useful for the 
production of diverse derivatives and analogs of a lead 
compound by the introduction of different combinations 
of biosynthetic enzymes, showing great potential for the 
development and production of novel compounds with 
unprecedented antimicrobial activities.

Due to the modular nature of PKS, engineering the PKS 
itself is another important strategy for the generation of 
diverse antibiotic derivatives. One notable example is the 
production of non-natural fluorinated erythromycin ana-
logs. Fluorination is widely used for the chemical modifi-
cation of drugs to give new pharmacokinetic properties 
[209, 210]. To produce fluorinated analogs of 6-dEB, 
the native extender unit for erythromycin biosynthesis, 
(2S)-methylmalonyl-CoA, should be replaced with fluo-
romalonyl-CoA. As the cis-AT within the modular PKS 
is primarily responsible for the gatekeeping of extender 
units, it was eliminated from the PKS, and a standalone 
trans-AT engineered for enhanced substrate selectiv-
ity towards fluoromalonyl-CoA was introduced instead 
(Fig.  2B) [211]. Fluoromalonyl-CoA could be produced 
within the cell by the supply of fluoromalonate, which 
was converted to fluoromalonyl-CoA by a malonyl-CoA 
synthetase MatB. In another study, the AT domain of 
the DEBS module 6 was exchanged with AT from 12 dif-
ferent PKSs, allowing the incorporation of diverse CoA 
units (e.g., ethylmalonyl-CoA, butylmalonyl-CoA, and 
benzylmalonyl-CoA) as extender units [212]. In addition 
to AT domain engineering, modifying other domains 
within type I PKS modules can improve the production 
of target chemicals by enhancing inter-modular interac-
tions. For example, as the thioesterase (TE) domain plays 
a key role in substrate selectivity, site-directed mutagen-
esis of TE was employed to produce non-natural epimer-
ized hexaketide [213].

Other than swapping domains within the assembly 
lines, introduction of point mutations at or near the 
active sites can also lead to the production of diverse 
compounds. For efficient and rapid editing of large NRPS 
assembly lines within natural producers, CRISPR-Cas9 
gene editing tool was optimized, allowing the production 
of ten new lipopeptide variants of enduracidin with high 
yields [214]. Combinatorial engineering of PKS modules 
is not only used for the production of antibiotics, but 
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also for a diverse portfolio of chemicals, even including 
small chemicals (e.g., adipic acid, lactones, and ketones.) 
that have been conventionally produced from petroleum 
(Fig. 2C) [215–217].

Mutagenesis of type III PKSs is another effective 
strategy for diversifying antibiotics by virtue of their 

promiscuous substrate specificity [218–220]. For exam-
ple, a type III PKS from Huperzia serrata (HsPKS) 
accepted a non-natural starter unit, 2-carbamoylb-
enzoyl-CoA, instead of p-coumaroyl-CoA, produc-
ing a new polycyclic alkaloid (2-hydroxypyrido[2,1-a]
isoindole-4,6-dione) with two malonyl-CoA molecules 

Fig. 2  Strategies for diversifying antibiotics. A Application of tailoring enzymes with type II PKS to diversify polyketide-based antibiotics. B 
Engineering of type I and III PKSs. Altering substrate-interacting domains in type I PKS changes starter/extender unit selectivity, facilitating 
the production of novel antibiotics. Production of fluorinated erythromycin using fluoromalonyl-CoA is shown as an example. For certain type III 
PKSs, substrate promiscuity can be employed to diversify products. Engineering the cavity near the active site of a type III PKS can alter the carbon 
chain lengths of the products. C As NRPS comprises functional domains, engineering these modular systems can lead to the production of a wide 
range of non-natural antibiotics
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[221]. Expanding the active site cavity of HsPKS with 
the S348G mutation enabled the condensation of three 
malonyl-CoA molecules, producing another novel alka-
loid (1,3-dihydroxy-5H-dibenzo[b,e]azepine-6,11-dione) 
[221]. Both non-natural alkaloids inhibited the formation 
of biofilm formation by MRSA. As discussed above, alter-
ing the cavity space for polyketide carbon chain elonga-
tion effectively diversifies polyketide chain lengths, as 
also shown in other type III PKS mutants [222, 223]. This 
shows the potential and versatility of engineering PKS for 
the production of diverse non-natural chemicals by engi-
neered microbial cell factories.

Engineered PKS and tailoring enzymes are often intro-
duced into heterologous microbial hosts, which fre-
quently lack favorable intracellular conditions for the 
functional expression of these complex biochemical 
machineries. For example, as megasynthases such as type 
I PKSs are not always efficiently and solubly expressed in 
heterologous hosts due to their large sizes, the efficiency 
of expression of PKS-coding genes as well as the solu-
bility of PKSs greatly affects the efficiency of polyketide 
biosynthesis. Also, when different modules within PKSs 
are recombined and engineered, protein folding and thus 
solubility can be affected, leading to alteration in the effi-
ciency of polyketide biosynthesis. Therefore, monitoring 
the solubility and functionality of the engineered PKSs 
is important. In this regard, a biosensor that can moni-
tor the abundance of misfolded and aggregated proteins 
was developed by employing promoters of ibpA and fxs 
that are observed to be highly expressed upon accumula-
tion of misfolded proteins [224]. By the expression of the 
mCherry gene encoding a fluorescence protein under the 
ibpA promoter, the solubility of engineered PKSs could 
be easily monitored. Using the biosensor, a type I modu-
lar PKS harboring a hybrid acyltransferase domain show-
ing high solubility and activity could be selected. The 
combined engineering of PKSs and tailoring enzymes 
could lead to the generation of a much larger number 
of new antibiotic candidates, potentially contributing 
to the development of new antibiotics with no existing 
resistance.

Semi‑synthesis
While synthetic biology and enzyme engineering have 
been effective for producing diverse antibiotics and 
their derivatives, the range of reactions enzymes can 
catalyze still falls short of chemical synthesis. In this 
regard, semi-synthesis—combining biosynthesis with 
chemical reactions—can be employed. Semi-synthesis 
has been successful in developing new antibiotics from 
previously discovered classical antibiotics. Following 
the development of methicillin—the first semi-syn-
thetic antibiotic derived from penicillin to combat 

β-lactamase-producing, penicillin-resistant bacteria—
additional semi-synthetic antibiotics, such as ampicillin, 
amoxicillin, azithromycin, and tigecycline were subse-
quently developed [225]. One notable example is amoxi-
cillin (a derivative of penicillin G), which is synthesized 
by attaching p-hydroxyphenylglycine to the amino group 
of 6-aminopenicillanic acid, the core structure of penicil-
lin. This modification enhances the antibiotic’s activity 
by inhibiting essential enzymes involved in the cross-
linking of bacterial cell walls, resulting in a broader spec-
trum of antibiotic effects compared to penicillin [226]. 
Additionally, the production of arylomycin derivatives 
serves as another representative example. To diversify 
arylomycins, three moieties attached on the macrocy-
clic tripeptide core, an N-terminal lipopeptide tail, a 
C-terminal carboxylic acid, and two phenol groups, were 
modified. One of the derivatives, G0775 showed sig-
nificanatly improved antibiotic effects against 49 MDR 
clinical strains of E. coli and K. pneumoniae, 16 MDR 
A. baumannii strains, 12 MDR P. aeruginosa strains, as 
well as methicillin-resistant S. aureus and S. epidermidis 
[227]. Another example is the production of derivatives 
of chelocardin, an atypical tetracycline produced by 
Amycolatopsis sulphurea [228]. Chemical modifications 
of amidochelocardin (2-carboxamid-2-deacetyl-chelo-
cardin) through methylation, acylation, and halogena-
tion resulted in the production of 22 different derivatives. 
Notably, fluorination at the C7 position led to the signifi-
cant enhancement of antimicrobial activity (Fig. 3) [228].

Chemical modification can also lead to the enhance-
ment of pharmacokinetic properties. For example, 
natamycin is an antibiotic with low toxicity, but its low 
bioavailability and solubility make it unsuitable for ther-
apeutic use. To improve its solubility, natamycin was 
modified by attaching various diamines, among which 
the derivative containing an ethylenediamine moiety 
showed approximately a ten-fold increase in solubility 
and also two to eight-fold lower MIC [229]. Additionally, 
while natamycin lacks antibacterial effects at high con-
centrations, derivatives containing ethylenediamine or 
N-(2-fluorobenzyl) ethane-1,2-diamine moieties exhib-
ited significant antibacterial effects.

Vancomycin has been one of the most effective anti-
biotics for treating complicated skin infections, blood-
stream infections, endocarditis, bone and joint infections, 
and meningitis caused by methicillin-resistant S. aureus 
(MRSA), one of the most deadly pathogens. However, 
the emergence of vancomycin resistance has necessi-
tated the development of vancomycin derivatives. To 
address this, a guanidinium motif was introduced at the 
vancosamine site in vancomycin, leading to the produc-
tion of the lipoglycopeptide EVG7, which demonstrated 
superior antimicrobial activity compared to vancomycin 
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[230]. In addition, a biguanide-vancomycin conjugate, 
V − C6 − Bg-PhCl, showed superior antibacterial activi-
ties towards mycobacteria and the ESKAPE pathogens 
[231]. Derivatization of caprazamycin is another repre-
sentative example of semi-synthetic antibiotics. Capraza-
mycin is an antibiotic derived from Streptomyces sp. MK 
730-62F2, which is effective against several mycobacterial 
species as well as gram-positive and gram-negative bac-
teria. Acidic treatment of caprazamycins A-G led to the 
production of caprazene, which was further modified by 
adding alkylamide, anilide, and ester functional groups. 
Notably, while caprazene itself lost antibacterial activity, 
its derivatives restored and even showed higher antibac-
terial activities than the original caprazamycins [232]. 
Such examples demonstrate that diversification of known 
antibiotics to produce a series of non-natural antibiotics 
can be an effective strategy for combating MDR bacteria. 
For more in-depth studies on semi-synthetic antibiotics, 
readers are guided to the following literature [233, 234].

Conclusion
With the increasing threat posed by the emergence of 
MDR bacteria, the need for the discovery and develop-
ment of novel antibiotics has grown. Although the rate 
of new antibiotic discovery had significantly slowed 
down after the ‘golden era of antibiotic discovery’ during 

1940s ~ 1960s, new tools and strategies for the discov-
ery and development of new antibiotics have continued 
to be reported in various fields, including biology, bio-
informatics, synthetic biology, metabolic engineering, 
systems biology, and synthetic chemistry. As these tools 
and strategies have become more widely available, the 
discovery of new antibiotics directly from nature and the 
prediction of BGCs capable of producing new antibiot-
ics through metagenome sequencing have become more 
common. As discussed in the above sections, cultur-
ing “unculturable” microorganisms for the discovery of 
new active compounds has greatly expanded the acces-
sible chemical space in nature. Advances in single-cell 
sequencing technologies and genome mining tools have 
also allowed exploration of vast BGCs, which undoubtly 
harbor numerous BGCs capable of producing novel anti-
biotics with unprecendented properties [235]. Captur-
ing such BGCs and introducing them into heterologous 
chassis microorganisms for producing them with large 
quantities has been made possible by advancements in 
synthetic biology strategies, including large gene cluster 
assembly, gene expression control, and extensive libraries 
of standardized biological parts. Activating cryptic BGCs 
in native producers has also proven useful for the discov-
ery of new antibiotics. Such advancements have greatly 
facilitated the mining of “microbial dark matters” from 

Fig. 3  Semi-synthesis for further diversification of antibiotics. Biosynthesis of atypical tetracycline, amidochelocardin, through metabolic 
engineering. Chemical modifications of amidochelocardin enable the production of diverse derivatives, some of which may exhibit enhanced 
antimicrobial properties
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nature, which can be leveraged as antibiotics or serve as 
lead compounds for developing antibiotics [236].

Also, high performance bacterial strains capable of 
efficient production of antibiotics and their non-natural 
derivatives have been developed using synthetic biology, 
facilitating the translation of these new antibiotics to the 
clinic. State-of-the-art genome engineering tools, such 
as CRISPR, base editing, and prime editing, along with 
gene expression manipulation tools like CRISPRi and 
sRNA, have enabled the tailored construction of micro-
bial cell factories capable of efficiently producing target 
antibiotics from renewable carbon sources in one-step 
bioprocesses [237]. With a defined target chemical and 
metabolic pathway, synthetic biology now enables signifi-
cant increases in product titers. Improved understanding 
of metabolic and regulatory pathways in actinomycetes 
has also made it easier to manipulate these hosts, which 
are traditionally challenging to engineer but rich in sec-
ondary metabolites. Enzyme engineering has also played 
a crucial role in diversifying antibiotics to introduce 
new properties. Advanced enzyme and strain engineer-
ing strategies, such as automated directed evolution and 
machine learning-assisted metabolic engineering, will 
provide an expanded portfolio of reactions available for 
the synthesis of new antibiotics to combat MDR bacteria.

However, one notable challenge is that testing the 
efficacy of new antibiotics in animal models or clini-
cal tests with human patients is difficult and time-con-
suming. This issue could potentially be addressed in the 
near future by employing ‘organ-on-a-chip’ technology, 
which mimics the environment of real organs within 
an animal or human. Using this technology will also 
allow for a deeper understanding of the MoA of new 
antibiotics and the physiological change in pathogens 
within the human body upon antibiotic treatment [238, 
239]. Another challenge is that designing biosynthetic 
enzymes such as PKS or NRPS for the production of 
desired chemicals is still difficult. Recent advances in 
protein structure prediction and protein design models, 
such as AlphaFold3 [240], will eventually allow the cre-
ation of designable antibiotics using high-performance 
enzymes specifically designed to produce the target 
chemicals with desired chemical structures. The devel-
opment of machine learning will not only facilitate the 
discovery of new BGCs from vast metagenomic data, 
but also allow for the design of antibiotics with specific 
chemical structures that can precisely interact with the 
target molecules within pathogens. Such designer anti-
biotics could be a game-changer in our fight against 
pathogenic bacteria. Recent applications of deep learn-
ing for the prediction of the antibiotic activity and 
cytotoxicity of millions of chemicals [241] showcase 
the potential of artificial intelligence (AI) in screening 

large libraries of antibiotic candidates [242, 243]. Other 
treatment options for combating MDR bacteria, such as 
antisense oligonucleotides, antimicrobial peptides, and 
microbiota-based therapeutics, are also being actively 
studied [244–246]. Continued efforts in developing 
innovative metabolic engineering and synthetic biology 
tools and strategies, combined with interdisciplinary 
collaboration in areas such as in silico enzyme mod-
eling and semi-synthesis, will strengthen humanity’s 
fight against infectious diseases.
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