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Abstract
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO2-NPs) as versatile 
nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities 
such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, 
biocompatible, and rapid methods for TiO2-NP synthesis to overcome the disadvantages of traditional approaches. 
TiO2-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, 
which enable diverse applications. Through detailed analysis, this review demonstrates significant applications of 
green fabricated TiO2-NPs in biomedicine, explicitly highlighting their antimicrobial, anticancer, and antioxidant 
activities, along with applications in targeted drug delivery, photodynamic therapy, and theragnostic cancer 
treatment. Additionally, the review underscores their pivotal significance in biosensors, bioimaging, and agricultural 
applications such as nanopesticides and nanofertilizers. Also, this review proves valuable incorporation of TiO2-NPs 
in the treatment of contaminated soil and water with various environmental contaminants such as dyes, heavy 
metals, radionuclides, agricultural effluents, and pathogens. These comprehensive findings establish the foundation 
for future innovations in nanotechnology, underscoring the importance of further investigating bio-based synthetic 
approaches and bioactivity mechanisms to enhance their efficacy and safety across healthcare, agricultural, and 
environmental applications.
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Introduction
In the 1980s, nanotechnology breakthroughs allowed 
scientists to manipulate atomic particles, enabling the 
engineering of nanoscale materials and structures. This 
innovation has applications in biomaterials, organic 
chemistry, and medicine [1]. This microscopy technol-
ogy has reshaped modern medicine, introducing new 
approaches to drug delivery, body imaging, and disease 
detection with remarkable precision [2]. Nanotechnol-
ogy has progressed challenging diagnoses and advanced 
understanding of disease mechanisms. Due to their 
molecular-level size, nanoparticles enhance treatments 
in both in-vivo and in-vitro lab settings. These micro-
scopic carriers facilitated targeted drug delivery in high-
risk areas, delivering exact doses while minimizing side 
effects [3].

Nanoparticles (NPs) possess significant advantages 
compared to bulk materials, including expanded surface 
area, elevated surface energy, constrained nano environ-
ment, and decreased imperfections [4]. Characteristics 
of nanoparticles, like size, shape, chemical makeup, sur-
face architecture, and crystallinity, heavily influence their 
potential uses across many areas, including pharmaco-
logical domains such as antimicrobial [5, 6], antioxidant 
[7], anticancer [8], anti-tyrosinase potential [9] as well as 
industrial and optoelectronics domains [10].

In this regard, transition metals have garnered sig-
nificant attention due to two key factors: firstly, their 
atomic electronic configuration features incomplete 
d-orbitals, and secondly, their ability to undergo fluc-
tuating oxidation phases. Consequently, their intrinsic 
physicochemical properties can be tailored for a vast 
array of applications across the fields of natural sci-
ences and materials engineering [11]. Furthermore, 
these metallic elements can generate a diverse range of 
oxide compounds, which present promising prospects 
for expanding the frontiers of research across burgeon-
ing domains such as environmental studies, agricultural 
applications, medical advancements, cosmetic formula-
tions, energy storage solutions, fuel cell technologies, 
semiconductor device development, sensor innova-
tions, and catalytic processes [12]. Particle size is a piv-
otal factor that significantly influences the fundamental 
properties of any material. Firstly, with regard to struc-
tural properties, bulk oxides exhibit robustness and low 
phase stability, whereas nanoparticle oxides can readily 
undergo structural transformations and possess low sur-
face free energy due to their reduced particle size [13]. 
Secondly, concerning electronic properties, the surfaces 
of bulk oxides are extended due to the distribution of 
ionic charge as compared to the nanoscale structure [14]. 
Thirdly, the band gap of bulk oxides is broad. In con-
trast, NP oxides exhibit a low band gap, enhancing con-
ductivity and chemical reactivity [15]. Consequently, by 

modulating the particle size, materials’ structural, elec-
tronic, physical, and chemical properties can be tailored 
to meet specific requirements across various applica-
tions. Therefore, as a result, oxide nanoparticles, owing 
to their size limitations and abundant density of corner 
surface sites, possess the ability to exhibit unique physical 
and chemical properties [16].

Due to the high production of titanium oxide nanopar-
ticles (TiO2-NPs), approximately 10 × 103 tons in 2011, 
it is considered the major and promising industrial sub-
stance [17]. TiO2-NPs owe their widespread use to their 
economical production costs, superior chemical stability, 
elevated refractive index, robust oxidation capabilities, 
and the existence of oxygen vacancies in their crystalline 
lattice [18]. The substantial band gap exhibited by TiO2-
NPs is a pivotal property that renders them suitable for 
semiconductor applications in the optical industry [19]. 
Attributed to the exceptional electrical and ionic prop-
erties of TiO2-NPS, these materials can be further cus-
tomized and tailored to be utilized in the fields of sensor 
technology and electronic device fabrication [20].

TiO2-NPS manifests as a white, water-insoluble powder 
with a remarkably high refractive index of 2.4, rendering 
it suitable for pigments in the paint industry [21]. Nota-
bly, TiO2 naturally occurs in three distinct polymorphic 
forms - rutile, anatase, and brookite - each possessing a 
crystalline structure. These polymorphs find extensive 
applications in the gemstone industry [22]. Furthermore, 
owing to their unique crystalline nature, the physical 
and chemical properties of TiO2-NPs can be tailored by 
modifying the ratio of these polymorphic forms, thereby 
expanding their scope of applications across various 
sectors. The remarkable versatility of TiO2-NPs is high-
lighted by their extensive and successful applications 
across diverse domains. These nanoparticles have proven 
invaluable in the field of sensors [23]. While also serv-
ing as photocatalysts for the decomposition of wastewa-
ter pollutants [24]. Furthermore, their antimicrobial and 
antibacterial properties [25] allow for their use as food 
additives and in cosmetic products [26].

In this review, we delve into different eco-friendly, safe, 
and sustainable synthesis techniques for TiO2-NPs pro-
duction. This eco-friendly approach offers significant 
advantages over conventional industrial methods, nota-
bly improved reagent handling and enhanced process 
safety [27]. Furthermore, to the best of our knowledge, 
we have endeavored to provide a comprehensive sum-
mary of the various biomedical applications of TiO2-NPs, 
encompassing their antioxidant, antibacterial, antifungal, 
antiviral, and anticancer with other biotechnological and 
environmental applications. This review aims to elucidate 
our current understanding within this field and inspire 
the exploration of more sophisticated nanostructures 
in the forthcoming years. By elucidating the synthesis 
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methods and potential applications, we strive to pave 
the way for future advancements and innovations in the 
realm of TiO2-NPs.

Synthesis methods
Conventional methods
Conventional methods for synthesizing metal oxides 
can be broadly categorized into two distinct approaches: 
top-down and bottom-up. The top-down approach 
involves breaking down bulk macroscopic particles into 
nanoscopic particles (1  mm-xµ) through various physi-
cal methods. This approach is relatively straightforward 
than the bottom-up but also encounters monodispersed 
challenges and limited particle control. Various physical 
techniques involved, such as milling, etching, sputtering, 
pulse laser ablation, and evaporation-condensation tech-
niques [28].

On the other hand, the bottom-up approach relies on a 
self-assembly process, whereby atomic nuclei are joined 
together to form nanosized particles (0.1  nm-xµ). This 
approach facilitates the easy manipulation of nanopar-
ticle dimensions and morphology, resulting in superior 
homogeneity. However, its drawbacks include scalability, 
strict resource constraints, and multi-phase implementa-
tion. It encompasses several techniques and processes, 
including chemical vapor deposition, sol-gel processes, 
hydrothermal methods, sonochemical techniques, flame 
spraying, spinning, and green synthesis methods [29]. 
Notably, while the top-down approach focuses on reduc-
ing the size of bulk materials to the nanoscale, the bot-
tom-up approach builds nanoparticles from the ground 
up, starting with atomic or molecular precursors [30]. 
The choice between these approaches depends on sev-
eral factors, such as the desired material properties, cost-
effectiveness, and scalability requirements.

Researchers have developed a wide range of chemi-
cal and physical approaches to synthesize nanoparticles 
with diverse geometries, enabling their application across 
numerous fields. Among the novel techniques employed 
for achieving these distinct nanoparticle geometries, 
a clear distinction can be drawn between lithography-
based techniques and non-lithographic methods [31]. 
The lithography techniques, which include photolithog-
raphy, ion beam lithography, microcontact printing, dip 
pen lithography, and nanoimprint lithography, involve 
patterning materials on a surface through various litho-
graphic processes [32]. These techniques allow for precise 
control over the geometric features of the nanoparticles. 
On the other hand, non-lithographic techniques encom-
pass methods such as ball milling, a mechanical process 
for grinding and mixing materials, evaporation-con-
densation, and electrochemical synthesis, which utilizes 
electrochemical reactions to synthesize nanoparticles 
[33]. These non-lithographic approaches offer alternative 

routes for nanoparticle synthesis, potentially enabling 
unique geometric configurations.

Nonetheless, the methods mentioned earlier frequently 
necessitate multiple processing steps, stringent control 
over variables such as pressure, pH, and temperature, 
and the employment of expensive equipment and toxic 
chemicals. Furthermore, these techniques often result 
in the generation of toxic by-products that pose a sig-
nificant threat to ecosystems [34]. In light of these chal-
lenges, there is an urgent need to develop eco-friendly 
approaches utilizing biological and green synthesis 
techniques.

Biogenic synthesis
Considering a broader perspective, biological approaches 
embrace the concept of “green synthesis” for the pro-
duction of nanoparticles [35]. This method can be 
further categorized into two distinct pathways: (a) phy-
tosynthesis, where the synthesis process is facilitated by 
leveraging the capabilities of plants and their extracted 
compounds, and (b) microbial synthesis, which involves 
harnessing the synthetic potential of microorganisms 
such as bacteria, algae, fungi, yeasts, and actinomycetes, 
utilizing extracts derived from these organisms. The phy-
tosynthetic route exploits the natural ability of plants to 
synthesize materials by harnessing their varied metabo-
lites. At the same time, the microbial pathway capitalizes 
on the metabolic machinery of various microbial species 
to generate the desired metal and its oxides-nanoparti-
cles. These biological methods offer an environmentally 
friendly and sustainable alternative to conventional syn-
thesis techniques [36, 37].

Green synthesis surpasses conventional processes by 
integrating non-toxic biological organisms, natural acids, 
and water as solvents and safer catalysts while replacing 
hazardous chemical substances. This eco-green strategy 
significantly enhances reaction efficiency with faster syn-
thesis times and higher yields for industrial scalability 
(Table 1). Concurrently, it generates substantial product 
yields of biocompatible nanoparticles that are imperative 
for use within the medical and pharmaceutical domains 
[38].

The green synthesis approach faces several key chal-
lenges that can potentially obstruct its successful imple-
mentation. Firstly, the optimization processes required to 
synthesize nanoparticles with specific size distributions 
and morphological characteristics are inherently tied to 
their intended biological functions (Table  1). Secondly, 
deciphering the distinct role played by each constituent 
compound involved in the biofabrication process man-
dates a comprehensive chemical analysis of the filtered 
biological biomass [39].
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Phytosynthetic routes
The synthesis of nanoparticles facilitated by plants is 
considered more stable compared to the synthesis medi-
ated by microbes. The process of producing nanoparti-
cles using plant extracts is straightforward, economical, 
and yields a high quantity while adhering to sustain-
able practices [41]. These plant extracts can be derived 
from various plant parts, such as flowers, roots, seeds, 
or leaves. Among the different plant parts, leaves are 
more commonly utilized for obtaining extracts, as they 
are abundant in metabolites [42]. Leaves offer a more 
viable option for deriving extracts without generating 
toxic byproducts. These processes involving leaf extracts 
are straightforward, economical, and non-toxic, making 
them easily accessible and compatible for NPs produc-
tion with appropriate quantities suitable for industrial 
and environmental sectors [43].

Significantly, plant extracts are abundant in poly-
phenolic compounds that function as potent reducing 
agents, thereby facilitating the reduction of metal ions 
and consequently leading to the formation of nanopar-
ticles [44]. Additionally, the reduction of these metallic 
ions can be prompted by various cellular components 
such as amines, carbonyls, phenolic compounds, pig-
ments, terpenoids, and alkaloids [45]. This synthesis pro-
cess is driven by redox reactions involving metallic ions 
and secreted molecules like sugars, carbohydrates, and 
proteins. However, elucidating the precise mechanism 
of action remains challenging due to the vast chemical 
diversity of the metabolites involved in the reduction 
process [46]. Nevertheless, experimental parameters 
such as pH, temperature, reactant concentration, and 
reaction time play a pivotal role in determining the phys-
ical-chemical properties of the resultant nanoparticles 
[47]. Moreover, the biodiversity and availability of differ-
ent plant families, each with unique profiles of primary 
and secondary metabolites, contribute significantly to 

producing various biogenic nanoparticles with important 
antimicrobial applications [48].

The desired plant part undergoes thorough washing 
and cleaning, followed by boiling in a solvent like ethanol 
(C2H6O) or dH2O and subsequent filtration (Fig. 1). The 
resultant filtered solution, rich in plant extracts, serves 
as a reducing agent. To this filtered solution, a suitable 
metallic or metallic oxide precursor such as titanium tet-
raisopropoxide (Ti(OCH(CH3)2)4), titanium tetrachloride 
(TiCl4), or titanyl hydroxide (TiO(OH)2) for TiO2-NPs 
synthesis is introduced under constant agitation [49]. The 
reaction mixture starts vigorously when the TiO2 precur-
sor salt is combined with the plant extract, and a color 
change indicates the first sign of nanoparticle synthesis 
[50]. This initial observation can then be confirmed after-
ward by spectroscopic techniques, leading to the forma-
tion and characterization of the desired TiO2-Nps [51].

A major portion of green synthesis studies utilize leaf 
extracts, as leaves are abundant reservoirs of metabolites. 
For example, Extracts from Moringa oleifera leaves facili-
tated the synthesis of TiO2-NPs around 100  nm in size 
with varying shapes, exhibiting promising wound healing 
capabilities [52]. Another TiO2-NP was synthesized using 
the leaf extract of Hibiscus rosasinensis L. and exhibited 
potent antimicrobial activity against both Gram-nega-
tive and Gram-positive bacterial strains [53]. In another 
study, TiO2-NPs derived from Nyctanthes leaf extracts 
possessed a uniform spherical shape and ranged in size 
from approximately 100 to 150 nm. These biogenic NPs 
demonstrated significant pediculicidal (lice-killing), acar-
icidal (mite-killing), and larvicidal (larva-killing) proper-
ties [54]. Similarly, the leaf extract of Calotropis gigantea 
L. was reported to facilitate the reduction of TiO2 to 
nanoparticles within a span of 6 h, attributed to the pres-
ence of primary amines in the extract. The bio-mediated 
TiO2-NPs exhibited promising acaricidal activity against 

Table 1 Summarizing the advantages and disadvantages of biogenic NPs synthesis
Biogenic NPs 
synthesis

Advantages Disadvantages Ref-
er-
ence

Plant-Derived 
NPs

- Bio-safe, inexpensive, and quick Production process
- Eco-sustainable approach (contaminants and pollutants recycling)
- Optimize synthesis oversight with stable and uniform NPs yield
- Biomass waste utilization and reusability

- Genetically unmodifiable, unlike 
microorganisms

 [35, 
36, 
38, 
40]

Microbial Me-
diated NPs

- Decreased requirement for extra capping or stabilizing agents.
- Can be genetically altered for higher yields.
- Less handling of toxic chemicals & lower infrastructure requirements
- Quick and easy to adjust and manipulate synthesis parameters (PH, temp.etc.)
- Adaptive capabilities with different synthesis routes (intracellular, extracellular, 
and cell-free extract synthesis.
- Cost and energy-efficient approach
- Versatile biomedical and industrial applications

- Scaling up manufacturing for commer-
cial production (contamination, sterility, 
and cost concern).
- Multiple separation steps are needed, 
as well as batch-to-batch yield variation 
with the possibility of NPs aggregation 
over time
- Bioproduct quality variance.
- Constrained dimensional control and 
NPs instability for particular NPs
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the larvae of Rhipicephalus microplus and Haemaphysa-
lis bispinosa [55].

The synthesis of TiO2-NPs has also been reported using 
the aqueous leaf extract of the medicinal plant Cathar-
anthus roseus (L.). The aliphatic alcohols and amines 
present in the extract contributed to the formation of 
TiO2-NPs with irregular morphologies and particle 
sizes ranging between 25 and 110 nm [56]. Notably, the 
variation in size and morphology observed among the 
reported studies is influenced by factors such as reaction 
temperature, time, and the source of the plant extract 
[57]. Thus, optimizing these parameters can lead to 
improvements in the synthesis mechanism [58]. Further-
more, a wide array of propitious plant extracts remains to 
be explored for synthesizing TiO2-NPs. Table 2 shows the 
green synthesis of TiO2-NPs using plant extracts regard-
ing their sizes, shapes, and applications.

Microbial synthesis
The green synthesis of NPs follows a bottom-up strat-
egy, where NPs form through the oxidation/reduction 
of metallic ions facilitated by biomolecules secreted by 
microorganism entities. These biomolecules, including 
enzymes, proteins, sugars, carbohydrates, and others, 
play a crucial role in driving the redox processes that lead 
to the generation of nanoparticles [88]. Despite extensive 
research, a comprehensive understanding of the nanopar-
ticle synthesis mechanism driven by microorganisms 
remains elusive as each type of microorganism interacts 
with metallic ions through various pathways [89]. The 
biochemical processes and interaction dynamics of a 
specific microorganism, coupled with environmental fac-
tors such as temperature and pH, ultimately influence the 

geometric parameters and form of the resultant nanopar-
ticles [90].

The formation of nanoparticles can occur through 
either intracellular or extracellular mechanisms, contin-
gent upon the specific type of microorganism involved 
[91]. Researchers have leveraged the potential of living 
cell extracts to pursue biological nanoparticle synthesis. 
The subsequent sections will concisely explore the pri-
mary biological pathways employed for this synthesis.

Bacterial-mediated TiO2-NPs biosynthesis Bacteria 
are favored for nanoparticle synthesis due to their rela-
tively undemanding conditions, uncomplicated purifica-
tion processes, and prolific generation. Consequently, 
these microorganisms have emerged as extensively stud-
ied " nanomaterial production hubs“ [36]. Depending on 
their specific characteristics, various bacterial species 
can synthesize these NPs intracellularly or extracellularly 
(Table  3). The bacterial synthesis of TiO2-NPs is aided 
by their natural defense mechanisms, allowing them to 
adapt to environmental changes and resist certain metals. 
This process can occur through three primary methods: 
using whole cells, supernatants, or extracts. Superna-
tants, obtained after centrifuging bacterial cultures, con-
tain various bioactive compounds such as enzymes, pro-
teins, amino acids, polysaccharides, and carbohydrates, 
which are utilized as biocatalysts for NPs production [92]. 
This bacterial-mediated approach offers a versatile and 
efficient method, capitalizing on these microorganisms’ 
inherent properties and adaptability.

The biosynthesis of TiO2-NPs from Ti3+ ions (titanium 
precursors) by bacteria occurs through a three-step pro-
cess: trapping, bioreduction, and capping. Initially, bac-
teria in the aqueous solution or surrounding medium 

Fig. 1 Flowchart showing plant-mediated production of TiO2-NPs starting from plant extract to applications
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Table 2 Examples of some plants-derived TiO2-NPs and their applications
Plant Species Size Shape Applications / Properties Studied Reference
Morus nigra (Mulberry) 0.17 nm 

(TiO2(Aq)), 
0.076 nm 
(TiO2(Et))

round shape- irregular 
surface morphologies

Antimicrobial activity against Staphylococcus aureus and Proteus 
mirabilis

 [59]

Carthamus tinctorius 
(Safflower)

47 nm Spherical, irregular Alternative fuel additives for diesel-biodiesel blends, impact on 
engine performance and emissions

 [60]

Phyllanthus niruri Industrial wastewater treatment  [61]
Ivy leaf extract 26.34 nm irregular spherical and 

tetragonal shape
Cefoperazone removal from pharmaceutical wastewater, antimi-
crobial activity

 [62]

Punica granatum 
(Pomegranate)

100–150 nm spherical Antibacterial activity against E. coli  [63]

Mentha arvensis 80.51–200 nm Triangular aggregation 
pattern

Antioxidant activity (DPPH, FRAP assays)  [64]

Mangifera indica 
(Mango)
Azadirachta indica 
(Neem)

3–27 nm
8–28 nm

agglomerated spheri-
cal-like morphology
less 
agglomerated- spherical

Antimicrobial activity against fungi and bacteria, antioxidant activ-
ity, non-linear optical activity

 [65]

Avicennia marina 
(Mangrove)

25–35 nm irregular, rough, and 
granular surface texture

Methylene Blue Removal, nitrate, and chemical oxygen Demand 
(COD) reduction

 [66]

Cissus rotundifolia 1–100 nm Spherical Anticarcinogenic activity against Streptococcus mutans and 
Lactobacillus sp.

 [67]

Caesalpinia pulcherrima 20–30 nm Spherical Photocatalytic dye degradation of methylene blue, antimicrobial 
activity against bacteria

 [68]

Mucuna pruriens 5 μm to 500 nm Triangular aggregation 
pattern

Antioxidant activity (DPPH, FRAP assays)  [69]

Ocimum tenuiflorum 
(Holy basil)

10.2–15.2 nm knitted ball-like crystal-
line structure.

Enhancement of growth, physiology, enzymatic activities, essen-
tial oil content and yield

 [70]

Syzygium cumini (Java 
plum)

12–30 Round and 
polydisperse

Nematicidal activity against root-knot nematode (Meloidogyne 
incognita), impact on plant growth and physiology

 [71]

Morus alba (Mulberry) 28.34 nm Anatase crystalline 
phase

Antimicrobial activity, UV protection, colorfastness to washing/
rubbing/light

 [72]

Juniperus phoenicea 10–30 nm Spherical Insecticidal activity against Sitophilus oryzae, antimicrobial activity, 
impact on the nutritional value of grains

 [73]

Terminalia bellirica 420 nm Spherical Antioxidant activity, antimicrobial activity  [74]
Psidium guajava (Guava) 5–10 nm Spherical Antimicrobial activity against E. coli and S. aureus  [75]
Salacia reticulata 32–46 nm flake-like structures Antidiabetic, anti-inflammatory, antibacterial activities, develop-

mental toxicity in zebrafish embryos
 [76]

Psidium guajava (Guava) 10–30 irregular Antimicrobial activity, anticancer activity against MG-63 cells, 
structural and optical characterization

 [77]

Commelina benghalensis 150–200 nm Roughly spherical Photodegradation of methylene blue dye and sulfisoxazole 
antibiotic

 [78]

Moringa oleifera 
(Moringa)

10 nm Anatase form Impact on germination and growth of spinach seeds  [79]

Ipomoea carnea (Morn-
ing glory)

7–10 nm. spherical Effect on growth, yield, and quality of black carrot  [80]

Tinospora cordifolia 18–20 nm Spheroidal Photocatalytic degradation of methylene blue dye,  [81]
Tulbhagia violacea 31–42 nm Rectangular Antioxidant activity, anticancer activity against HEK 293 and HeLa 

cell lines,
 [82]

Trianthema 
portulacastrum
Chenopodium quinoa

30–50 nm
40–60 nm

spherical
round

Antifungal activity against Ustilago tritici (wheat fungal disease),  [83]

Mango leaf extract 10–30 Spherical (TN-2, TN-3), 
agglomerates (TN-1)

Antifungal activity against Penicillium steckii  [84]

Terminalia catappa 75.24 ± 1.12 nm Monoclinic-shaped, 
clustered

Plant modulating ability on Abelmoschus esculentus, antioxidant 
activity, impact on plant growth and physiology

 [85]

Juniperus phoenicea 10–30 nm Spherical Antimicrobial activity against various bacterial and fungal strains, 
anticancer activity against human ovarian adenocarcinoma cells

 [86]

Moringa oleifera leaf 25–110 nm spherical Salinity Stress mitigation in wheat crops  [87]
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trap Ti3+ ions. Subsequently, enzymes and proteins facili-
tate the reduction of these trapped ions into TiO2-NPs. 
Research has shown that microbial proteins containing 
functional groups such as –NH2, –SH, –COOH, and 
–OH plays a crucial role in stabilizing the synthesized 
TiO2-NPs [93]. These groups provide binding sites for 
Ti3+ ions and act as capping or stabilizing agents. The 
reduction of Ti3+ ions to NPs occurs either on the cell 
wall or within the bacterial intramembrane space. This 
process involves electron transfer from reduced com-
pounds to inorganic compounds, promoting bacterial 
bioreduction of NPs. Finally, various bacterial biomol-
ecules cap the reduced TiO2-NPs as natural stabilizing 
agents. This capping step is essential for maintaining NP 
stability, a critical factor in their synthesis and application 
[94].

Ti3+ (titanium salts) → Bacteria-Ti3+ ( Trapping).
Bacteria-Ti3+ + e−→ TiO2 -NPs (Bioreduction)
TiO2 -NPs + microbial functional groups (–NH2, –
SH, –COOH, –OH) → Capped TiO2 -NPs (Capping).

Among bacterial metabolites, exopolysaccharides (EPSs), 
which are heterogeneous organic biopolymers [95, 96] 
secreted into the extracellular environment [97] and 
have a vital function in providing protective microen-
vironments for bacteria [98, 99], enhancing their toler-
ance towards biotic and abiotic stresses while facilitating 

bacterial colonization [100, 101]. In biogenic nanoparti-
cles, EPSs exhibit intriguing characteristics. One notable 
property is mucoadhesion, which facilitates neutral coat-
ing with low surface energy and prevents the recogni-
tion of non-specific protein receptors. Moreover, EPSs 
can adsorb metal cations onto their surface, a trait that 
aids in stabilizing and biosynthesizing metal nanopar-
ticles. Their robust reducing and stabilizing capabilities 
make EPSs an attractive alternative biogenic substrate 
for synthesizing nanoparticles [102]. Upon interaction 
between metal ions and EPSs containing reducing sug-
ars, the metal ions undergo chelation, followed by their 
reduction and stabilization facilitated by various func-
tional moieties. Prominently, polyanionic groups, chiefly 
-COOH and -OPO3

2−, are well-documented to partake 
in reducing and stabilizing metal nanoparticles. Fur-
thermore, electrostatic interactions between metal cat-
ionic species and anionic EPS groups like -COOH and 
-OPO3

2− have been cited as advantageous for nanopar-
ticle synthesis. Among these functional entities, -OH, 
-COOH, -OPO3

2−, hemiacetal, and amino terminals have 
been proposed to reduce metal ions from precursor salts, 
yielding the corresponding nanoparticles. Notably, -OH 
groups coordinate with metal ions, whereas their oxi-
dation to form carbonyl and -COOH groups is pivotal 
during the reduction process and nanoparticle forma-
tion [103]. Moreover, the abundance of -OH and hemi-
acetal end groups in EPSs facilitates the reduction and 

Table 3 Bacterial and actinomycetes species-mediated biosynthesis of TiO2-NPs showing promising biomedical and biotechnological 
applications
Source Size Shape Applications/Properties Studied Reference
TiO2-NPs fabricated by bacterial strains
Staphylococcus aureus (G + ve) ~ 20 nm (average 

diameter)
Smooth and 
spherical

Antibacterial and antibiofilm against Bacillus 
subtilis and Escherichia coli

 [112]

Lactobacillus rhamnosus (G + ve) 3–7 nm Spherical Antifungal against isolated fungal strains, Bio-
compatible towards WI38 and HFB4 cell lines

 [113]

Bacillus subtilis MTCC 8322 (G + ve) 80–120 nm Spherical to 
irregular

Photocatalytic dye degradation (Methylene Blue 
and Orange G)

 [114]

Bacillus subtilis (G + ve) 70.17 nm spherical Improved mechanical properties of Glass Iono-
mer Cement (GIC) for dental applications

 [115]

Paenibacillus sp. HD1PAH and Cyperus 
brevifolius.

17.11 nm
29.39 nm

Spherical
Granular

Anthracene biodegradation, soil enzyme activi-
ties increased

 [116]

Halomonas elongata IBRC-M 10,214 (G-ve) 104.63 ± 27.75 nm Spherical Antibacterial against E. coli and S. aureus  [117]
Lactobacillus johnsonii (G +ve) 4–9 nm Irregular Desalinization and surface cleaning  [118]
Bacillus amyloliquefaciens (G +ve) 22.11–97.28 nm Spherical Photocatalytic dye degradation (Reactive Red 

31), enhanced by doping
 [119]

Aeromonas hydrophila (G-ve) 40.50 nm Smooth, spheri-
cal, uneven

Antibacterial against S. aureus and S. pyogenes  [120]

Propionibacterium jensenii (KC545833) (G +ve) < 80 nm uniform size and 
anatase form

Collagen stabilization for wound dressing  [121]

Bacillus subtilis (FJ460362) (G +ve) 10–30 nm Mostly spherical Photocatalytic control of aquatic biofilm  [122]
TiO2-NPs formed by actinomycetes strains
Streptomyces sp. HC1 30–70 nm Spherical Antimicrobial activity, antibiofilm activity  [110]
Streptomyces bluensis 58.3 nm spherical Azo dye degradation  [123]
Saccharopolyspora spinosa 23.3 nm Spherical Antimicrobial  [124]
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stabilization of nanoparticles, rendering them more suit-
able for diverse applications. Additionally, monosaccha-
rides like glucose, galactose, mannose, and fructose have 
been mentioned to reduce metal ions, contributing to the 
mechanisms involved in nanoparticle synthesis observed 
with other EPSs [104].

Also, Actinomycetes have the ability to produce a 
diverse array of secondary metabolites, have emerged as 
promising sources for the biosynthesis of nanoparticles 
with desirable surface characteristics and size control 
[105]. These microorganisms possess the remarkable 
capability to facilitate the production of metallic and 
metal oxide NPs through either intracellular or extra-
cellular methodologies [106] (Table 3). The extracellular 
approach has garnered significant commercial interest 
due to its advantage of minimizing polydispersity, a cru-
cial factor in nanoparticle synthesis [107]. Notably, acti-
nomycetes are a class of high-content guanine and 
cytosine microorganisms primarily exploited for their 
antibiotic production capabilities [108]. However, 
their versatility extends beyond antibiotics, as several 
researchers have successfully synthesized TiO2-NPs by 
harnessing the metabolic pathways of these remarkable 
microorganisms [109]. This further highlights the poten-
tial of actinomycetes as a valuable resource for the green 
synthesis of nanoparticles with diverse applications.

Among the recent examples, one study reported the 
synthesis of spherical-shaped titanium TiO2-NPs, rang-
ing in size from 30 to 70 nm, using Streptomyces sp. HCl. 
The developed TiO2-NPs were tested as antimicrobials 
against various pathogenic microorganisms, including 
Staphylococcus aureus, Escherichia coli, Candida albi-
cans, and Aspergillus niger. The researchers concluded 
that the synthesized TiO2-NPs exhibited higher antimi-
crobial properties against bacterial species compared to 
fungal species [110]. Another study reported the synthe-
sis of TiO2-NPs using the marine actinobacteria Strep-
tomyces bluensis as the biological source. The precursor 
for the nanoparticle synthesis was Ti(OH)4. The resulting 
spherical TiO2-NPs exhibited an average size of 37.54 nm 
and exhibited high potential to degrade azo dyes, includ-
ing AR-79 and AR-80, with percentages of 84% and 85%, 
respectively [111]. Table  3 shows some bacterial and 
actinomycetes species that were utilized for TiO2-NP 
synthesis.

Fungal-mediated TiO2-NPs biosynthesis Fungi have 
gained widespread nanoparticle biosynthesis adoption 
due to their metabolites’ remarkable efficacy in fabri-
cating diverse nanoparticles. They represent a valuable 
addition to the repertoire of microorganisms employed 
for nanoparticle production. The extensive utilization of 
various fungal species can be attributed to their capacity 
to secrete substantial quantities of proteins or enzymes, 

coupled with their ease of handling in laboratory settings 
[125]. The utilization of fungi for synthesizing metal-
lic nanoparticles has garnered substantial attention due 
to their possessing certain advantageous traits surpass-
ing other organisms. The ability to readily scale up and 
streamline downstream processes, the economic viability, 
and the presence of mycelia with an augmented surface 
area constitute valuable advantages that warrant due con-
sideration [126]. Furthermore, fungi have gained height-
ened interest owing to their involvement in the biological 
synthesis of metallic nanomaterials, facilitated by their 
exceptional tolerance and remarkable ability to bioaccu-
mulate metals [127] (Fig. 2).

The synthesis of nanoparticles employing fungi and 
their biotechnological applications, particularly in 
medicine, are encompassed within the realm of myco-
nanotechnology. This scientific term, representing the 
convergence of “mycology” and “nanotechnology,” holds 
significant potential due to the vast diversity and range 
of fungal species [128]. Fungi can form nanoparticles 
in diverse structures spanning mesoscale to nanoscale 
dimensions via enzymatic reduction, either extracellu-
larly or intracellularly, and through biomimetic miner-
alization processes. Their extensive scalability has led to 
a distinct preference for their utilization in nanoparticle 
synthesis, exemplified by techniques such as thin solid 
substrate fermentation. Owing to the remarkable secre-
tory capabilities of fungi, producing abundant quanti-
ties of extracellular enzymes or proteins becomes viable 
[129]. Furthermore, the economic feasibility and sustain-
ability of employing biomass present another advantage 
for the implementation of a green approach, enabled 
by fungal entities or byproducts, in the fabrication of 
metallic nanomaterials [130]. Here are some examples of 
different fungal species used for the biosynthesis of TiO2-
NPs, referring to their activities (Table 4).

Yeasts, a class of fungi belonging to the ascomycetes 
group, have demonstrated remarkable potential for the 
synthesis of nanoparticles. Biological processes possess a 
superior ability to control the morphology of materials. 
During the logarithmic growth phase, the yeast Schizo-
saccharomyces pombe facilitated the synthesis of semi-
conductor nanocrystals [126]. Nanoparticles synthesized 
extracellularly by yeasts offer a wide range of advantages, 
as the protein-mediated interactions between the yeasts 
and nanoparticles facilitate subsequent downstream 
reactions and modifications [131]. The entire yeast family 
exhibits the remarkable capability of aggregating various 
heavy metals. They can sequester substantial amounts of 
toxic metal ions. Numerous studies have concluded that 
the mechanisms employed by these species to counter-
act the toxic effects of heavy metals involve the extracel-
lular production of polysaccharides or peptides. These 
biomolecules play a crucial role in either managing the 
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cell’s permeability barrier against heavy metals or actively 
effluxing them from the cell [132]. For direct intracellu-
lar delivery of metal ions, yeast cells need to be disrupted 
to avoid negative or lethal consequences. The toxicity to 
cells can be mitigated by either maximizing the retention 
of metal ions within the cells or by exposing them to met-
als that do not possess the same level of toxicity as lead, 
mercury, and cadmium ions [133].

The significant variations observed in size, particle dis-
tribution, monodispersity, and characteristics of the syn-
thesized nanoparticles can be attributed to the diverse 
mechanisms employed by different yeast strains from 
various families for nanoparticle formation. In yeast 
cells, a detoxification mechanism involving glutathione 
(GSH) and two classes of metal-binding proteins, namely 
metallothioneins and phytochelatins (PC), is utilized to 
facilitate the formation of nanoparticles [89]. In most 
yeast species, these molecules (GSH, metallothioneins, 
and PC) facilitated the formation pathway of nanopar-
ticles and stabilized the resulting compounds. The resis-
tance mechanism was defined as the ability of yeast 
cells to convert the absorbed metal ions into non-toxic 
polymer complexes. The nanoparticles formed by yeasts 
are commonly referred to as “semiconductor nanocrys-
tals” or “quantum semiconductor nanocrystals”. Recent 
research has revealed that yeasts can also synthesize vari-
ous other types of nanoparticles [126]. More examples of 

biosynthesis of TiO2-NPs using yeast strains were sum-
marized in (Table 4).

Viruses-mediated TiO2-NPs biosynthesis Viruses pro-
vide an important illustration of how nanosized particles 
can be synthesized. So far, viruses have produced nano-
tubes and nanorods [148]. Research studies and experi-
ments have demonstrated that plant viruses and certain 
bacteriophages can be readily isolated and subjected to 
further processing [149]. However, not all virus compo-
nents can synthesize nanoparticles, and the underlying 
reasons for this need to be thoroughly investigated and 
understood [150]. One study reported the successful for-
mation of chalcogenide nanocrystals within genetically 
modified virus-like particles [151]. Leveraging the self-
assembly capabilities of the genetically modifiable M13 
virus, TiO2 nanostructures with controlled sizes between 
20 and 40  nm were synthesized under ambient condi-
tions, enabling their homogeneous distribution and per-
colated networks suitable for exploiting their promising 
photo-electrochemical properties [152] (Table 5).

Algae-mediated fabrication of TiO2-NPs Algae are 
capable of accumulating significant quantities of heavy 
metals, an attribute that enables them to be utilized for the 
biosynthesis of metallic and metal oxide NPs [153]. Algae 
have found widespread application in the synthesis of 

Fig. 2 Promising characteristics of fungi as a green tool for NPs synthesis
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TiO2-NPs due to their ready availability and effectiveness. 
Beyond just enzymes and proteins, these phytosynthetic 
organisms also possess carotenoids and various pigments 
involved in photosynthesis, which contribute significantly 
to the physio-assisted (algae-mediated) production of 
TiO2-NPs. However, algal-based synthesis methods for 
these nanoparticles are not as well-established compared 

to bacterial synthesis routes [154]. Additionally, algae 
can synthesize nanoparticles utilizing their extracts or 
supernatants, which are rich in secondary metabolites. 
These extracts obviate the need for live algal cultures in 
nanoparticle synthesis [155].

In one study, TiO2-NPs were synthesized using the 
algae Spirulina platensis [156]. Moreover, another study 

Table 4 Examples of biosynthesis of TiO2-NPs using different fungal species with reference to their size, shape, and activities
Species Size Shape Applications / Properties Studied Reference
TiO2-NPs produced by multicellular fungi
Aspergillus eucalypticola SLF1 33 nm Mesoporous, anatase 

phase
Photocatalytic, antimicrobial, antioxidant activity  [134]

Paraconiothyrium brasiliense 57.39 ± 13.65 nm Spherical Antibacterial, antibiofilm properties  [135]
Fomitopsis pinicola 80–120 nm Irregular with a rough 

surface
Antibacterial and anticancer activity  [136]

Trichoderma viride 10.4 to 45.8 nm 
(size range), 
26.619 ± 7.577 nm 
(mean size)

Elliptical to spherical Larvicidal, antifeedant, pupicidal activity against Helicoverpa 
armigera

 [137]

Trichoderma citrinoviride 10–400 nm Irregular, triangular, 
pentagonal, spherical, 
rod-shaped

Antibacterial activity against Pseudomonas aeruginosa, 
antioxidant potential

 [138]

Trichoderma harzianum 50.0 nm Spherical Enhanced growth of T. harzianum, inhibitory against Sclero-
tinia sclerotiorum

 [139]

Aspergillus niger DS22 10.4 to 45.8 nm, 
26.619 ± 7.577 nm 
(mean size)

Elliptical to spherical Antibacterial, anti-inflammatory, wound-healing activities  [140]

Aspergillus flavus 62–74 nm Spherical, oval Antibacterial activity  [141]
Metarhizium anisopliae 9.50 nm Spherical Larvicidal, pupicidal, antifeedant activity against Spodoptera 

frugiperda
 [142]

Hypsizygus ulmarius ~ 80 nm Spherical Antibacterial and anticancer potential  [143]
Pleurotus djamor 31 nm Spherical Mosquito larvicidal, antibacterial, anticancer effects  [144]
Streptomyces sp. HC1 30 to 70 nm Spherical Antimicrobial and antibiofilm activity  [110]
Alternaria solani 15 nm Agglomerated Antimicrobial, anticoagulant, antiplatelet, hemolytic and 

cytotoxicity properties
 [145]

TiO2-NPs produced by yeasts
Saccharomyces cerevisiae 
(Baker’s yeast)

8–35 nm Individual aggregate Photocatalytic
antimicrobial activity

 [146]

Saccharomyces cerevisiae 6.7 ± 2.2 nm Spherical Photocatalytic activity, antimicrobial activity  [147]

Table 5 Examples of the biosynthesis of TiO2-NPs using viruses and algae with noted size, shape, and applications
Source Size Shape Activity Reference
Viruses
M13 bacteriophage 20–40 nm quasi-spherical photo-electrochemical properties  [152]
Algae
Bostrychia tenella (Red macroalga) 22.86 nm Uniform, monodispersed Antifouling activity  [160]
Carteriospongia foliascens (Marine sponge) 8.3 nm uniform, monodispersed 

particles
Antifouling activity

Sargassum wightii (Brown macroalga) 20–80 spherical Larvicidal activity against mosquito 
malaria’s vector

 [161]

Phaeodactylum tricornutum (Microalga) 50 nm spherical Antimicrobial activity, antistatic properties, 
cytotoxicity against cancer cell lines

 [162]

Sargassum myriocystum (Brown macroalga) 50–90 nm Cubic, square, spherical larvicidal activity against mosquito larvae, 
photocatalytic dye degradation

 [163]

Spirulina platensis (Microalga) 4.62 nm Spherical, dispersed 
irregularly

Antifungal Activity  [164]

Spirulina platensis 90–150 nm spherical Antimicrobial activity  [157]



Page 11 of 40Ghareeb et al. Microbial Cell Factories          (2024) 23:341 

reported the synthesis of spherical-shaped TiO2-NPs 
ranging from 90 to 150 nm in size by utilizing an extract 
from S. platensis [157]. Also, TiO2-NPs were synthesized 
from the seaweed Sargassum wightii, and their efficacy 
was evaluated for killing the larvae of vectors that trans-
mit malaria and filariasis [158]. Another investigation 
involved the synthesis of negatively charged TiO2-NPs 
with cubic, square, and spherical shapes ranging approxi-
mately 50–90 nanometers in size, utilizing Sargassum 
myriocystum as the source material. Additionally, the 
researchers in this study assessed the antimicrobial prop-
erties of the synthesized titanium dioxide nanoparticles 
[159]. Table 5 summarizes some examples of the biosyn-
thesis of TiO2-NPs using different algal strains.

Factors modulating biosynthesis
The shaping and resizing of metallic and their oxide 
nanomaterials seem to be influenced by their environ-
mental conditions or altered by the presence of func-
tional molecules [165]. Researchers have explored 
modifying various synthesis parameters, such as ther-
mal conditions, acidity/alkalinity, incubation duration, 
oxygenation, ionic strength, redox state, mixing pro-
portions, and irradiation, to optimize the production of 
nanoparticles. Both chemical and physical factors gov-
ern the dimensions and morphology of nanoparticles. 
Achieving optimal conditions for metal ion concentra-
tion, thermal environment, and acidity/alkalinity is cru-
cial during the synthesis process [166]. The properties of 
nanoparticles formed via biological methods are signifi-
cantly influenced by the incubation time of the reaction 
medium. Prolonged incubation can lead to variations in 
characteristics, potentially due to particle aggregation 
or shrinkage [46]. Consequently, the particles’ self-life 
or stability may impact their functional potential over 
extended periods. Therefore, in addition to the synthe-
sis parameters like thermal conditions, acidity/alkalin-
ity, substrate concentration, and exposure duration to 
the substrate, the incubation time is a crucial factor that 
governs the characteristics and potential of biologically 
synthesized nanoparticles [167]. Adjusting these syn-
thesis parameters can modulate the rate of nanoparticle 
formation within cells and their eventual size to some 
extent. In the subsequent subsections, precursor concen-
tration, temperature, and pH will be further explained, 
since these key parameters contribute to the optimiza-
tion and the efficiency of the biogenic process as they sig-
nificantly influence the nucleation rate, reaction kinetics, 
aggregation, and stabilization of the desired nanoparticle 
characteristics.

Effect of Precursor and reducing Agent concentrations on 
nanoparticle size and agglomeration
Precursor and reducing agent concentrations crucially 
determine the synthesized nanoparticles’ size [168]. Ini-
tially, excessive reducing agents bind to preformed nuclei, 
amplifying secondary ion reduction on their surfaces. 
This accelerates nanoparticle growth, yielding larger sizes 
at higher reactant concentrations [169]. However, an 
overly high reducing agent concentration adversely pro-
motes nanoparticle bridging and aggregation. This arises 
when an abundance of metal ions adsorbs onto nuclei 
surfaces, facilitating uncontrolled secondary reduction 
and agglomerated growth [170]. Therefore, striking the 
right balance in reactant concentrations is vital to avoid 
aggregation issues and achieve monodisperse nanopar-
ticles with the desired size [171].

Temperature effects on nanoparticle size and dispersity
Temperature plays a crucial role in determining nanopar-
ticle size during synthesis. Higher temperatures tend to 
promote nucleation, leading to the formation of numer-
ous smaller nanoparticles. In contrast, lower tempera-
tures favor slower growth processes, resulting in fewer 
but larger nanoparticles [172]. However, increasing the 
overall reaction temperature accelerates the total reac-
tion rate [173]. Notably, temperature exhibits contrasting 
effects on the size under sufficient versus insufficient pre-
cursor conditions due to differing influences on nucle-
ation and growth kinetic constants [174]. As temperature 
increases, the enhanced reduction rate consumes most 
metal ions in nuclei formation, hindering secondary 
reduction on preformed nuclei surfaces. Consequently, 
elevated temperatures yield smaller, highly dispersed 
nanoparticles with improved yield [175].

Influence of pH on nanoparticle size, shape, and Colloidal 
Stability
The pH during nanoparticle synthesis exerts a profound 
influence not only on the size but also on the shape of the 
resulting particles [176]. The pH governs the local sur-
face characteristics of nanoparticles [177] by facilitating 
the protonation and deprotonation of molecular atoms 
during the nucleation and growth stages [178]. Notably, 
nanoparticles synthesized under lower pH conditions 
exhibit less regularity in shape and a tendency toward 
aggregation. However, by tailoring the pH conditions 
during synthesis, nanoparticles with the desired size and 
uniform shape can be produced [179]. Conversely, in the 
alkaline pH range, nanoparticles form a well-dispersed 
cluster distribution in the colloidal stage, thereby pre-
venting aggregation [180].
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Characterization of nanoparticles
The physicochemical characterization of synthesized 
nanoparticles is a crucial step that demands meticulous 
attention before their practical applications. Investigat-
ing properties such as size, shape, surface area, homo-
geneity, and stability provides valuable insights into 
these nanoscale systems, enabling better control over 
nanoparticle synthesis for commercial purposes [181]. 
Various characterization techniques are employed, each 
serving a distinct function [182]. The color change test 
offers a simple visual indication of nanoparticle for-
mation. UV-visible spectrometry analyzes the optical 
properties and confirms the presence of nanoparticles. 
In the case of TiO2-NPs synthesized by bacteria, they 
exhibit UV-Vis absorption peaks in the range of 300–
400 nm. Most of these peaks are observed between 350 
and 400 nm, whereas in some cases, the peaks are found 
below 350  nm. This variation in peak position is attrib-
uted to the presence of different biomolecules involved in 
the synthesis process and the size and shape of the NPs, 
which affect their surface plasmon resonance. Fourier 
transform infrared spectroscopy (FT-IR) elucidates the 
chemical composition and identifies functional groups 
that facilitate the stabilization and surface modification/
capping of the synthesized TiO2-NPs.

Electron microscopy techniques, including transmis-
sion electron microscopy (TEM), high-resolution TEM 
(HR-TEM), scanning electron microscopy (SEM), and 
field emission-SEM (FE-SEM), provide detailed visualiza-
tion and structural analysis of nanoparticles. Also, they 
provide insights into the association of carbon-based bio-
molecules with the synthesized NPs [183]. In SEM, the 
non-metallic regions appear darker due to electron defi-
ciency, while in TEM, these areas appear brighter com-
pared to the darker titanium element. Additionally, the 
elemental analyzer integrated with electron microscopy 
facilitates the determination of the chemical composi-
tion and purity assessment of the synthesized TiO2-NPs. 
Complemented by data from (FTIR) and (XRD), electron 
microscopy can reveal the presence and nature of bio-
molecules associated with the TiO2-NPs [184].

Energy-dispersive X-ray spectroscopy (EDX) mapping 
reveals elemental composition and distribution within 
nanoparticles. Dynamic light scattering (DLS) mea-
sures the size distribution and aggregation behavior of 
nanoparticles in solution [185].

Powder X-ray diffraction (XRD) is crucial for charac-
terizing the synthesized TiO2-NPs as it determines their 
crystalline structure and phase composition. TiO2-NPs 
can exist in three different phases: anatase, rutile, and 
brookite. The anatase phase exhibits a sharp peak near 
two theta values (2θ) of 25–26°, while the rutile phase is 
identified by a peak around 2θ value of 27–28°. By ana-
lyzing the specific peak positions and intensities in the 

XRD pattern, the presence of these phases in the syn-
thesized TiO2-NPs can be determined. Vibrating sample 
magnetometry (VSM) evaluates their magnetic proper-
ties. Thermogravimetric analysis (TGA) assesses thermal 
stability and quantifies components within nanoparticle 
samples. Zeta potential reflects the surface charge of 
NPs, influencing their suspension stability. Higher abso-
lute values imply enhanced stability through electrostatic 
repulsion. Contact angle measurements determine the 
extent to which a liquid spreads on a solid surface, pro-
viding insights into the surface energy and hydrophobic-
ity of nanoparticles [186]. Moreover, the 2D shape and 
3D shape were detected and investigated by atomic force 
microscopy (AFM), whereas the chemistry of TiO2-NPs 
surface, state of chemical and electronics within NPs, and 
elemental composition were assessed by X-ray photo-
electron spectroscopy(XPS) [187].

These techniques collectively offer comprehensive 
characterization, enabling researchers to thoroughly 
understand the synthesized nanoparticles and optimize 
their synthesis for diverse applications.

Biomedical and biotechnological applications of 
TiO2-NPs
Within the rapidly evolving landscape of nanotechnol-
ogy, the realm of biomedical applications has witnessed 
remarkable progress fueled by extensive research endeav-
ors. Nanoparticles have garnered significant attention 
due to their distinctive physicochemical properties, 
which render them advantageous across a diverse array of 
fields, including pharmaceutical formulations, diagnos-
tic tools, personal care products, and electronic devices 
[188]. The unique characteristics inherent to nanomate-
rials, particularly their minuscule size ranging from 1 to 
100 nm, heightened reactivity, and immense surface area, 
have unlocked novel avenues for exploration and innova-
tion [189]. These properties facilitate their cellular entry 
and interaction with biomolecular and cellular pathways, 
rendering nanomaterials invaluable assets in the realm of 
drug therapeutics [190](Fig. 3).

TiO2 emerges as a highly versatile material, rendering 
it an attractive choice across a wide array of applications 
due to its remarkable mechanical and photochemical 
characteristics [191]. In the realm of cosmetics, TiO2 
finds utility in formulating anti-aging and skin-brighten-
ing products, harnessing its unique characteristics [192]. 
Similarly, its optoelectronic properties make it a valu-
able component in the fabrication of devices and sen-
sors within the electronics industry [193]. Furthermore, 
the medical field has embraced TiO2 for its potential in 
targeted drug delivery systems, antimicrobial activity, 
treatment of cancer cells, biosensors, dental treatment, 
anti-inflammatory activity, etc. (Fig.  3). The following 
subsections comprehensively explore some biomedical 
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and biotechnological applications of TiO2-NPs, high-
lighting their remarkable versatility and vast potential 
across diverse domains.

Antioxidant activity
TiO2-NPs, especially those formed by plant extract that 
impaired various functional groups, showed high anti-
oxidant activity to be utilized for decreasing the delete-
rious effects of free radical ions [194]. These TiO2-NPs 
were able to scavenge free radicals, such as 2,2′-casino-
bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 
2,2-Diphenyl-1-(2,4,6-trinitrophenol) hydrazine-1-yl 

(DPPH), within a reduced timeframe, demonstrating 
their antioxidant capabilities (Table  6). TiO2-NPs are 
also reported to exhibit protective effects against reactive 
oxygen species (ROS). Plant-mediated synthesis methods 
result in TiO2-NPs with functional groups such as phe-
nols and tannins, contributing to their stabilization and 
enhanced antioxidant potential. These functional groups 
present on the surface of the nanoparticles play a crucial 
role in scavenging free radicals and mitigating oxidative 
stress [195].

In a study, the green synthesis of TiO2-NPs using 
Psidium guajava (guava) leaf extract exhibited superior 

Fig. 3 Flowchart enumerates the biomedical and biotechnological applications of TiO2-NPs
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antioxidant activity compared to ascorbic acid. This 
enhanced antioxidant potential was attributed to the 
presence of phenolic compounds in the aqueous leaf 
extract (85.4  mg/g) and the synthesized TiO2-NPs 
(18.3 mg/g).

The phenolic content in the plant extract played a 
crucial role in the formation and stabilization of the 
nanoparticles, contributing to their remarkable antioxi-
dant properties [196]. Similarly, Artemisia haussknechtii 
leaves synthesized TiO2-NPs with strong antioxidant 
properties. The synthesized NPs have been tested 
through various assays, indicating a remarkable DPPH 
scavenging activity of 68.43% at a concentration of 
500 µg/ml. The reducing power of TiO2-NPs was greater 
than ascorbic acid (control), as determined by the reduc-
ing power assay to donate an electron [197]. In another 
study, TiO2 nanoparticles, produced using fruit peel 
agro-waste, possess antioxidant potential. The study uti-
lized various scavenging assays such as DPPH free radi-
cal, H2O2 free radical, and NO, as well as the reducing 
power assay. The results showed that TiO2 nanoparticles 
exhibited dose-dependent antioxidant effects compared 
to ascorbic acid, which was used as a control [198].

Antimicrobial activity
Antibacterial activity
The indiscriminate use of antibiotics has resulted in 
the emergence of multidrug-resistant bacterial strains, 
which has become a significant cause for concern regard-
ing food safety and human health [209]. In the quest for 
novel antibacterial agents, metal oxide nanoparticles 
have garnered significant interest from researchers, with 
biofilm formation being identified as a major factor con-
tributing to antibiotic resistance [210]. Consequently, 
scientific investigations have shifted focus to explore the 
antimicrobial capabilities of nanoparticles composed of 
metals and metal oxides.

TiO2-NPs exhibit photocatalytic antimicrobial activity 
when exposed to UV irradiation with a wavelength below 
385 nm. However, the effectiveness of this antimicrobial 
activity displayed by TiO2-NPs is contingent upon the 
thickness of the microbial cell surface [211]. TiO2-NPs 
exhibit antibacterial activity through the generation of 
reactive oxygen species (ROS), such as hydroxyl radicals 
(OH-), superoxide anions (O2•-), and hydrogen peroxide 
(H2O2) (Fig.  4). These ROS induce oxidative stress on 
the bacterial cell membrane, inducing lipid peroxidation 
in the plasma membrane’s unsaturated phospholipids. 
Consequently, the bacterial membrane sustains dam-
age. Additionally, the photocatalytic activity of TiO2-NPs 

Table 6 Antioxidant activity of green synthesized TiO2-NPs
TiO2-NPs Synthesized by Antioxidant Activity/ Assay used Reference
Psidium guajava (guava) leaf extract Superior to ascorbic acid/(TiO2-NPs:18.3 mg/g)  [196]
Artemisia haussknechtii DPPH scavenging activity: (68.43% -500 µg/ml of TiO2-NPs)  [197]
fruit peel agro-waste Dose-dependent antioxidant effects (DPPH, H2O2 free radical, NO, and reduc-

ing power assays)
 [198]

Lawsonia inermis
Leaf extract

5-100 mg/ml of TiO2-NPs enhanced DPPH scavenging and 82% reduction in 
hydrogen-mediated hemolysis

 [199]

Syringodium isoetifolium Strong antioxidant activity in DPPH and ABTS assays  [200]
Tinospora Cordifolia 90% DPPH scavenging assay  [201]
Trichoderma citrinoviridae 50–100 µg/ml of tested TiO2-NPs in DPPH were potent than standard gallic 

acid
 [138]

Coleus aromaticus 100 µg/ml of TiO2-Nps tested caused 89% scavenging in DPPH assay  [202]
Withania somnifera
Eclipta prostrata

DPPH scavenging activity (68.43% at 500 µg/ml)  [203]

Laurus nobilis (bay leaf ) DPPH 46.71% at 200 µg/ml and H2O2 of 58.45% at 50 µg/ml  [203]
Terenna asiatica IC50 = 80.21 µg/µL in the DPPH assay  [204]
Achillea wilhelmsii C. Koch ROS generation (215.4%) and decreased MMP (72%)  [205]
Terminalia catappa bark extract 47% reduction in MDA content  [85]
Pithecellobium dulce
Lagenaria siceraria
Leaves extracts

52% and 45% for DPPH inhibition respectively  [206]

Malva parviflora extract 85% DPPH inhibition and 90% scavenging for ABTS.  [207]
Tulbhagia violacea
Leaf extracts

50 µg/mL of TiO2-NPs showed IC50 = 32.7 in DPPH assay  [82]

Limonia acidissima
Peel extract

(ROS) release and (MMP) damage at 70 µg/ml of TiO2-NPs  [208]

DPPH:2,2-Diphenyl-1-picrylhydrazyl; NO: Nitric Oxide; ABTS: 2,2’-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); ROS: reactive oxygen species; MMP: 
Mitochondrial Membrane Potential; MDA: Malondialdehyde
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disrupts crucial biological processes within bacteria, 
including respiration, oxidative phosphorylation reac-
tions, and the maintenance of semi-permeability [212]. 
Figure  4 presents various antibacterial mechanisms of 
TiO2-NPs used to inhibit bacterial growth.

A research investigation examined the impact of 
TiO2-NPs on biofilm formation by Methicillin-Resistant 
Staphylococcus aureus (MRSA) using a tissue culture 
plate method (Table  7). Among the 30 isolates evalu-
ated, 22 demonstrated strong biofilm formation capabili-
ties, while 2 exhibited weak biofilm formation. The study 
revealed that TiO2-NPs at a concentration of 500 µg/mL 
inhibited the growth of both strong and weak MRSA 
biofilm formers, suggesting the potential of TiO2-NPs 
as viable antibacterial options [213]. In another study, 
TiO2-NPs were employed in combination with antibiotics 
ceftazidime and cefotaxime against multidrug-resistant 
Pseudomonas aeruginosa. The bacterial samples were 
isolated from sputum, pus, and bronchoalveolar lavage. 
Upon 1-hour UV light exposure, a bactericidal effect was 
observed at TiO2-NPs concentrations exceeding 350 µg/
ml. The minimum inhibitory concentrations of TiO2-NPs 
were six-fold higher compared to the antibiotics. Con-
sequently, the combined application of antibiotics and 
TiO2-NPs synergistically augmented the antimicrobial 
activity [214].

Recently, the synthesis of TiO2-NPs-based nano-
composites is characterized by their high activity in the 

biomedical and food packaging sectors (Table  7). Their 
production encounters challenge due to the inherent 
dissimilarities between the inorganic and hydrophilic 
characteristics of the nanoparticles and the hydropho-
bic nature of polymer matrices. Nonetheless, antimicro-
bial nanocomposites derived from titania have garnered 
substantial interest in recent times [215]. A research 
endeavor delved into the electrochemical fabrication 
of silver-titania nanocomposites, striving to augment 
their photocatalytic characteristics while simultane-
ously amplifying their antifungal and antibacterial activi-
ties [216]. Another study focused on the development of 
paraffin and silver-coated titania nanoparticles (TiO2/
AgNPs) embedded in a polyethylene nanocomposite for 
food packaging purposes. Nanocomposite films were 
fabricated by melt-blending 3% and 5% of TiO2/Ag NPs 
into low-density polyethylene. The findings revealed 
that the addition of 5% TiO2/Ag NPs resulted in a sub-
stantial decrease in bacterial growth [217]. Therefore, the 
incorporation of TiO2 nanoparticles, whether used inde-
pendently or integrated with polymers, results in the sup-
pression of microbial growth, thereby preventing food 
spoilage and enhancing the shelf-life of food products 
[218].

Antifungal activity
Conventional fungicides and pesticides can be hazardous 
to health, making nanoparticles (NPs) a more desirable 

Fig. 4 Various antibacterial mechanisms of biogenic TiO2-NPs
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TiO2-NPs nature Size Shape Target and finding References
Antibacterial
Terminalia chebula 56 nm tetragonal Decreased biofilm of St. mutans  [219]
Rosa davurica 146 ± 3 nm irregular Bacterial biofilm inhibition of S. aureus and B. cereus  [220]
Cynodon dactylon < 100 nm firmly 

agglomerated
Antibacterial effect against A. baumannii and St. aureus  [221]

H. thelbiecea
Ananos seneglensis

40 nm
50 nm

spherical
crystalline

Bacterial cell membrane damage  [222]

Azadirachta indica Ficus benghalen-
sis Syzygium aromaticum

10–33 nm tetragonal
crystalline

Bactericidal effect against Streptococcus mutans and Citro-
bacter freundii

 [223]

Ocimum americanum L. leaf 25 nm spherical Bactericidal action against Clostridium perfringens, S. paraty-
phi and K. pneumoniae

 [224]

Pleurotus djamor 31 nm spherical Antibacterial effect against Pseudomonas fluorescens  and C. 
diphtheriae

 [144]

Commercial < 50 nm NA Inhibited MRSA biofilm formation  [213]
microemulsion 9 nm anatase structure Bactericidal effect on Pseudomonas aeruginosa  [214]
Electrochemical
(sacrificial anode)

TiO2 anatase 
(15.6 nm)
Ag-TiO2 
(15.6 nm)

spherical Enhanced antifungal and antibacterial activities  [216]

sol-gel method 10–15 nm spherical Used in food packaging to prevent spoilage & decreased 
bacterial growth

 [217]

Antifungal
Curcuma longa 92.6 nm anatase Increased resistance to damping off fungal disease by F. 

graminearum
 [225]

Commercial 70–130 nm Anatase crystal C. albicans was inhibited by 65%  [226]
Ball milling method 108–130 nm irregular hyphal lysis of Macrophomina phaseolina  [227]
Bacopa monnieri < 100 nm homoge-

neous surface 
morphology

Enhanced antifungal and antibiofilm activity against 
C.albicans and P.chrysogenum compared to PVA alone

 [228]

chemical 26 nm spherical Reduction of Candidal adhesion and biofilm formation  [229]
Commercial 6 nm NA Biocidal against Aspergillus niger on Paulownia wood  [230]
Commercial 50 nm thin homoge-

neous layer
Antifungal against wood-decaying fungi (Mucor circinelloides 
and Hypocrea lixii)

 [231]

Pogostemon cablin 71.82 nm NA Antifungal effect at low MFCs  [232]
Caricaceae (Papaya) shell extracts 15 nm Semispherical Antifungal activity against S. Sclerotiorums with improved 

seed germination
 [233]

African oil palm 14.60 ± 0.44 nm agglomerated 
hemispherical

Fusarium solani growth inhibition  [234]

Trichoderma harzianum 431 ± 87 spherical High chitinase activity against Sclerotinia sclerotiorum  [139]
Trianthema portulacastrum
Chenopodium quinoa

30–60 nm Granule-like 
shapes

Fungicidal effect against Ustilago tritici  [83]

ultrasonic NA Spherical with 
aggregation

Inhibited spores’ germination of F. graminearum  [235]

Caesalpinia pulcherrima
flower extract

20–27 nm spherical Superior anticandidal activity at low MICs  [236]

Antiviral
Sonochemical method 8 nm tetragonal Antiviral treatment of Newcastle disease virus (NDV)  [237]
Chemical hydrolysis 4–10 NA Viral treatment against H3N2 Influenza virus  [238]
Solid state reaction method 1 m²/g irregular Antiviral filtration against H1N1 (face masks)  [239]
chemical impregnation method NA amorphous Antiviral properties against H1N1 and SARS-CoV-2 

(COVID-19)
 [240]

sol-gel method 50–100 nm tubular Potent anti-SARS-CoV-2 activity  [241]
electrochemical anodization 
technique

10 nm tubular Electrochemical sensor for rapid detection of SARS-CoV-2  [242]

Commercial 50 nm spherical Antiviral activity against Human Papillomavirus HPV  [243]
Chemical adsorption method 1–100 nm Anatase Anti SARS-coV-2  [244]

Table 7 Summarizing the antimicrobial activity including antibacterial, antifungal, and antiviral of synthesized TiO2-NPs
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option as they exhibit fewer adverse effects and a more 
favorable therapeutic index, indicating a better safety 
margin [247]. Recently, TiO2-NPs have revealed fungi-
cidal effects against different human and plant patho-
genic fungi such as Fusarium oxysporum [248], Fusarium 
graminearum [225], the opportunistic human pathogen 
Candida albicans [226], Macrophomina phaseolina [227] 
(Table 7). Also, the researchers synthesized nanocompos-
ites comprising polyvinyl alcohol (PVA) and TiO2-NPs. 
These nanocomposites were evaluated for their anti-
fungal properties against two fungal strains: Candida 
albicans (ATCC 14053) and Penicillium chrysogenum 
(MTCC 5108); the results demonstrated that the PVA-
TiO2 nanoparticle biofilms showed enhanced antifungal 
activity potential comparing to PVA alone. The incorpo-
ration of TiO2 nanoparticles into the PVA matrix con-
ferred superior antifungal efficacy to the nanocomposite 
material [228].

Candidiasis, caused by Candida species, is an opportu-
nistic fungal infection affecting various mouth, skin, and 
genitourinary tracts [249] and can cause life-threatening 
bloodstream candidemia. It has a high global annual 
incidence of approximately 4 × 106 cases with a mortal-
ity rate of about 40%, resulting in a substantial economic 
burden due to treatment costs and prolonged hospital-
ization [250]. It has been reported that metal and their 
oxide nanoparticles such as (TiO2-NPs, Ag-NPs, Cu-NPs, 
ZnO-NPs) exhibited antifungal activity against Candida 
species through various mechanisms that synergistically 
contribute to the inhibition and eradication of these fun-
gal pathogens. Firstly, those nanoparticles release ions 
that disrupt crucial cellular processes within the fungal 
cells [229]. Additionally, they induce oxidative and nitro-
sative stress by generating reactive oxygen and nitrogen 
species, causing deleterious effects on cellular biomol-
ecules such as lipids, and nucleic acids [39]. Furthermore, 
these nanoparticles can directly interact with and com-
promise the structural integrity of the fungal cell mem-
brane and cell wall, compromising their barrier functions 
and potentially causing leakage of cellular contents [251]. 
Remarkably, certain nanoparticles can inhibit the activity 
of essential enzymes involved in various metabolic pro-
cesses, hampering the growth and survival of fungal cells 
(Fig.  5). Moreover, they can modulate the expression of 
specific genes involved in stress response, cell wall bio-
synthesis, and virulence factors, effectively regulating the 
fungal cell’s ability to thrive [252]. Also, they can deplete 

ATP levels, depriving the cells of their primary energy 
currency and impairing cellular functions [253]. Lastly, 
they can interact with and damage DNA, leading to 
genetic alterations and impaired replication [254]. They 
also disrupt protein structure and function and interfere 
with mitochondrial processes, further contributing to 
cellular dysfunction and growth inhibition (Fig. 5).

Laboratory and field studies on heritage buildings have 
also demonstrated the efficacy of TiO2 as an effective bio-
cidal agent against lichens and phototrophic microbes, 
as well as a preventive material against the biodeteriora-
tion of buildings [255]. Furthermore, the application of 
TiO2-NPs has been proposed as a protective measure for 
culturally significant buildings to mitigate the biodeterio-
ration of mortars caused by microbial growth [256]. For 
example, in one study, researchers evaluated the effects 
of TiO2-NPs against the fungal mold Aspergillus niger 
on the surface of Paulownia wood. The results showed 
that the treatment with TiO2-NPs effectively suppressed 
the growth of the fungal mold [230]. In another study, 
the antifungal effects of TiO2-NPs were assessed against 
wood-decaying fungal species, including brown rot 
(Mucor circinelloides) and white rot (Hypocrea lixii) fungi 
[231]. This suggests that TiO2-NPs possess remarkable 
antifungal properties and can be employed as an effective 
protective measure against fungal growth and deteriora-
tion in various wood-based applications.

However, it is noteworthy that the antifungal activity 
exhibited by TiO2-NPs appears to be relatively weaker 
compared to their antibacterial action. This discrepancy 
can be attributed to the fundamental differences in the 
structural composition of the cellular envelopes between 
fungi and bacteria. Fungal cells possess a more robust 
and complex cell wall structure, which may render them 
less susceptible to the antifungal mechanisms of TiO2-
NPs compared to bacterial cells with their relatively 
simpler cell envelope architecture [257]. Table 7 summa-
rizing examples for antifungal activity of biogenic TiO2-
NPs against various pathogenic fungi.

Antiviral activity
Nanoparticles like Ag, TiO2, and carbon nanotubes pos-
sess antiviral properties. These properties are employed 
to showcase the antiviral mechanisms, which include 
inhibiting the virus from binding to cells and facilitating 
the breakdown of the viral capsid [258]. Several factors 
influence the antiviral capabilities of NPs, including their 

TiO2-NPs nature Size Shape Target and finding References
Sol gel method 20 nm hemispherical Antiviral Activity Against Tobacco mosaic virus (TMV) in 

Pepper plants
 [245]

Hydrolysis chemical method 5–6 nm anatase Increased silkworm to Bombyx mori nucleopolyhedrovirus 
(BmNPV)

 [246]

Table 7 (continued) 
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behavior in air and water environments when studied in 
vitro.

Notably, TiO2-NPs have exhibited superior antivi-
ral activities against the Newcastle disease virus (NDV) 
when assessed at doses ranging from 6.25 to 100  µg/ml 
(Table  7). The mechanism behind this antiviral activity 
involves the potential of TiO2-NPs to destroy the lipids 
present in the viral envelope through the generation of 
ROS, a process known as G-sol. The glycoprotein spikes 
on the viral surface, which are known to be harmful in 
facilitating infections, are restricted by an adjunct mech-
anism, preventing the virus from binding and infecting 
cells. Consequently, TiO2-NPs represent a promising 
platform for the treatment of Newcastle disease virus 
infections [237]. Also, TiO2 nanostructures were uti-
lized to treat faba bean crops infected with the broad 
bean stain virus (BBSV). The faba bean plants treated 
with these NPs demonstrated a significant reduction in 
the severity of the viral disease compared to untreated 
plants. This superior antiviral effect was observed within 
two weeks after the plants were infected with the broad 
bean stain virus [259].

Further studies have highlighted the antiviral poten-
tial of TiO2 nanoconjugates and nanoparticles against 
various influenza viruses. In one investigation, TiO2-
NPs displayed antiviral capabilities against the H3N2 
influenza virus strain, with the proposed mechanism 
involving direct interaction between the nanoconjugates 

and the virus [238]. Additionally, TiO2-NPs have shown 
antiviral efficacy against the H9N2, the avian influenza 
virus. Notably, the replication of two other influenza 
strains, H5N1 and H1N1, was effectively inhibited by the 
application of DNA-tagged titanium nitride nanopar-
ticles (TiNPs) [211]. The H1N1 influenza virus, with 
its high frequency of genetic polymorphism [260, 261] 
that caused the 2009 pandemic, also posed an increased 
risk of subsequently developing type 1 diabetes in chil-
dren infected by it [249]. An interesting study has docu-
mented the potent antiviral capability of a TiO2-modified 
hydroxyapatite composite (HA/TiO2) against the H1N1 
Influenza A Virus when exposed to UV light irradiation. 
Notably, these composites exhibit potential for antimi-
crobial filtration applications, rendering them suitable 
for use in face masks to combat such highly mutable 
influenza strains [239]. Also, a novel nanocomposite 
comprising TiO2-NPs and polylysine (PL)-containing 
oligonucleotides, termed TiO2⋅PL–DNA. This nanocom-
posite exhibits antiviral properties against various sub-
types of the influenza A virus, including H1N1, H5N1, 
and H3N2 [240].

Investigations have demonstrated the remarkable 
disinfection capability of titanium dioxide nanotubes 
(TiO2-NTs) against SARS-CoV-2. These nanostructures 
exhibited potent anti-SARS-CoV-2 activity at extremely 
low concentrations in vitro, coupled with negligible 
cytotoxicity and an insignificant selectivity index (CC50/

Fig. 5 Suggested antifungal mechanisms produced by TiO2-NPs
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IC50 ≤ 1). Moreover, they displayed excellent antiviral 
efficacy at very low concentrations (IC50 = 568.6 ng/mL). 
Consequently, it was concluded that these TiO2 nano-
structures are well-suited for use as coatings, serving as 
potent disinfectants to combat SARS-CoV-2 [241]. While 
in another study, researchers developed an electrochemi-
cal sensor based on TiO2- NTs for the rapid detection 
of SARS-CoV-2. The surface engineering of these TiO2 
nanostructures has been proposed as a strategy to tailor 
their potential functionality, enabling real-world applica-
tions in combating the SARS-CoV-2 virus [242]. Inter-
estingly, a study explored the potential of TiO2 coatings 
in inactivating SARS-CoV-2 through time-dependent, 
TiO2-mediated photocatalytic reactions. Transmission 
electron microscopy (TEM) revealed microstructural 
changes in the SARS-CoV-2 virus upon interaction with 
the coating. The antiviral activity, assessed in aerosol 
and liquid forms, exhibited up to 99.9% effectiveness 
after 20 min of exposure. The mechanistic effects on the 
SARS-CoV-2 virion included decreased virion count, 
increased virion size, and reduced particle surface spike 
structure. Further analyses using western blotting and 
RT-qPCR investigated the photocatalytic damaging of 
viral proteins and genomes, respectively. The study con-
cluded that TiO2-induced photocatalytic reactions hold 
promise for disinfecting SARS-CoV-2 and other emerg-
ing infectious agents in human habitats [262].

Under UV light exposure, the TiO2 surface facilitates 
the decomposition of ambient oxygen and water into 
ROS, which act as highly oxidizing or reducing agents, 
leading to the decomposition of organic and microbial 
matter. Furthermore, modified TiO2 has demonstrated 
remarkable utility in visible light activity, enabling indoor 
or outdoor disinfection applications. This photocatalytic 
disinfection effect has also shown promising potential as 
an antiviral photocatalyst for controlling various viruses 
[211]. ROS, such as OH•, O2

•-, and H2O2, are produced at 
the surface of TiO2 due to UV activation (Fig. 6).

These highly reactive species possess the capability to 
degrade the capsid proteins of non-enveloped viruses as 
well as the envelope proteins and phospholipids of envel-
oped viruses. The degradation of these crucial viral com-
ponents leads to the leakage of genetic material, resulting 
in the subsequent degradation of nucleic acids. Conse-
quently, this process culminates in the eventual inactiva-
tion of the viral particles, rendering them non-infectious 
and incapable of replication or causing further infections 
[263].

Anticancer activity
Nanotechnology has gained prominence in cancer treat-
ment and diagnosis due to the severe side effects associ-
ated with traditional chemotherapeutic agents, which 
exhibit cytotoxicity on healthy cells. The application 

Fig. 6 Antiviral mechanisms of TiO2-NPs based on secretion of ROS
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of nanotechnology offers a more targeted and precise 
approach, minimizing harm to normal cells while effec-
tively combating cancer [264]. Nanotechnology research 
in cancer therapy focuses on developing nanostructures 
capable of delivering and releasing drugs in a targeted 
manner. Pursuing targeted drug delivery and controlled 
drug release represents the primary approach to aug-
menting therapeutic efficacy while mitigating adverse 
effects.

TiO2 nanostructures, renowned for their high bio-
compatibility, tunable drug release capabilities, and 
minimal toxicity, are widely acknowledged as promising 
candidates for enabling targeted delivery and controlled 
release of conventional chemotherapeutic agents, con-
sequently enhancing their clinical therapeutic impact 
[265]. Furthermore, TiO2-NPs have demonstrated their 
efficacy as drug carriers, facilitating targeted delivery 
of chemotherapeutics like doxorubicin, cisplatin, and 
temozolomide [266]. The subsequent sections provide a 
comprehensive review of significant research endeavors 
that have explored the utilization of TiO2 nanostructures 
in targeted drug delivery mechanisms and diverse con-
trolled release systems, shedding light on their potential 
in cancer treatment.

Target drug delivery
The primary objective of drug delivery systems is to 
enhance therapeutic efficacy while minimizing adverse 
effects through appropriate drug encapsulation. These 
systems have been designed with varying structures, 
such as spherical, capsular, and porous configurations, to 
achieve specific drug release profiles [267]. In this con-
text, the drug can be situated on the surface of TiO2-NPs, 
potentially leading to a controlled and sustained release 
pattern. TiO2-NPs are functionalized with specific mol-
ecules that possess targeting capabilities toward desired 
cells, allowing them to localize within tissue-specific 
cells and thereby enhancing their efficiency. These tita-
nium nanoparticles have been employed as nanocarriers 
for the delivery of various drugs, including sodium phe-
nytoin, valproic acid, temozolomide, and daunorubicin 
[268]. Initially, the drug release exhibited a burst pattern, 
followed by a controlled release over an extended period. 
Consequently, TiO2-NPs demonstrated the ability to 
deliver drugs with enhanced efficacy, optimized dosing, 
and controlled and sustained release profiles while simul-
taneously reducing toxicity levels.

The surface modification of nanocarriers plays a crucial 
role in enhancing the specificity of drug delivery [269]. 
A research study explored this concept by modifying 
TiO2-NPs with polyethylene glycol (PEG), followed by 
the attachment of folic acid (FA) and the standard anti-
cancer drug Paclitaxel (PAC). These anticancer proper-
ties were investigated in vivo using a diethylnitrosamine 

(DEN)-induced hepatocellular cancer animal model. The 
study’s findings revealed that the surface-modified Pacli-
taxel (PAC) attached to TiO2-NPs exhibited superior 
anticancer activity compared to PAC alone. Significantly, 
the surface modification of TiO2 with FA in the TiO2-
PEG-FA-PAC nanocomposite facilitated targeted deliv-
ery to liver cancer cells overexpressing FA receptors. This 
targeted approach resulted in increased accumulation of 
PAC-NPs at the cancer site, thereby reducing the drug’s 
toxicity. Moreover, the TiO2-PEG-FA-PAC nanocompos-
ite demonstrated a reduction in cell viability correlated 
with concentration. when tested on HepG2 liver cancer 
cells, further underscoring its potent anticancer effects 
[270].

Another study reported the enhanced anticancer activ-
ity of FA-TiO2-NPs against MG63 osteosarcoma cells. 
Compared to unconjugated nanoparticles, the FA-TiO2-
NPs exhibited a two-fold lower IC50 value, indicating 
improved cytotoxicity and efficacy in inhibiting can-
cer cell growth. The study also explored the apoptosis-
inducing effects of FA-TiO2-NPs on osteosarcoma cells. 
Treated cells displayed hallmark apoptotic features: con-
densed chromatin, surface membrane vesiculation, and 
cell volume reduction [271].

Remarkably, Annexin V/PI apoptosis assay unveiled a 
significantly higher percentage (38%) of cells undergoing 
early and late apoptosis upon FA-TiO2-NP exposure com-
pared to only 16% with unmodified TiO2-NPs. Moreover, 
cell cycle analysis revealed an augmented sub-G1 cell 
cycle in FA-TiO2-NP-treated cells, signifying escalated 
reactive oxygen species (ROS) production and height-
ened apoptosis induction. A parallel study demonstrated 
that the delivery of doxorubicin via TiO2 nanocompos-
ites facilitated enhanced intracellular drug retention and 
cellular internalization in multidrug-resistant MCF-7/
ADR breast cancer cells, effectively circumventing the 
P-glycoprotein-mediated efflux mechanism responsible 
for drug resistance [272]. Researchers in another study 
developed a pH-responsive drug delivery system by mod-
ifying TiO2-NPs with hyaluronic acid (HA) and loading 
them with the chemotherapeutic agent cisplatin for ovar-
ian cancer treatment. This nanoformulation facilitated 
enhanced cisplatin accumulation within A2780 ovarian 
cancer cells via endocytosis, exhibiting significant anti-
cancer effects [273].

Controlled drug release in cancer therapy
In an effort to enhance therapeutic efficacy and mitigate 
the undesirable side effects of the chemotherapeutic drug 
doxorubicin. Doxorubicin was encapsulated within TiO2-
NPs, forming DOX-TiO2-NPs. Subsequent evaluation 
of the anticancer potential of DOX-TiO2-NPs revealed 
an increased cytotoxic activity against the SMMC-7721 
hepatocarcinoma cell line, as demonstrated by the MTT 
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assay [274]. The ratio of Bax/Bcl-2 protein was increased 
upon DOX-TiO2-NP treatment which indicates the 
endocytosis uptake of doxorubicin, leading to caspase-
apoptotic processes [275]. It is worth highlighting that 
TiO2-NPs displayed minimal cytotoxicity when used 
independently at a concentration of 10 µg·mL− 1, with cell 
viability of 95%, indicating their potential for safe bio-
medical applications [274].

Stimuli-controlled drug release
Stimuli-responsive systems are designed to release drugs 
in response to specific signals. These signals can be clas-
sified into two categories: internal and external stimuli. 
Among the benefits of this system are reducing the side 
effects of used treatment drugs and increasing the drug’s 
biocompatibility. They facilitate controlled and tissue-
specific drug release, contributing to improved thera-
peutic outcomes [276]. light emerges as an intriguing 
external trigger for enabling the controlled and timed 
release of chemotherapeutic agents from delivery sys-
tems, owing to its capacity for precise spatial and tempo-
ral targeting [277]. In this context, TiO2 nanostructures 
have garnered substantial interest as photoactive drug 
carriers. In addition to their photoactive nature, TiO2-
NPs are preferred as drug carriers due to their character-
ized high surface area, durability, and accessibility.

In a study, a mesoporous TiO2 shell as a core-shell 
structure for near-infrared light-triggered drug deliv-
ery. Doxorubicin was loaded into the porous TiO2 shell, 
and hyaluronic acid (HA) capping was performed. The 
authors reported that the cell viability was decreased at 
drug release at low concentrations, indicating its prom-
ise for cancer therapy [278]. Also, colloidal TiO2-NPs 
were utilized as carriers for light-controlled delivery of 
a ruthenium complex drug to melanoma cancer cells. 
This system exhibited a faster drug release profile upon 
UV light exposure compared to visible light illumina-
tion. Furthermore, cell death increased when exposed to 
UV light as opposed to red light. The authors proposed 
that both the TiO2-NPs and the ruthenium complex 
could act as photosensitizers, generating reactive oxygen 
species and inducing cell death [279]. In another study, 
DOX was loaded onto TiO2-NPs, which were coated with 
polymeric phenylboronic acid (PBA) through a boronic 
ester bond. These nanoparticles exhibited high tumor-
targeting ability due to the specific interaction between 
PBA and sialylated epitopes on tumor cells. Additionally, 
ultrasound irradiation could generate ROS, leading to the 
release of DOX from the nanoparticles via cleavage of the 
boronic ester bond [280].

Studies show that increased oxidative stress from ele-
vated tumor ROS levels can be more damaging to cancer 
cells. ROS generation in the tumor environment trig-
gers desirable apoptotic cell death. Therefore, selectively 

exposing cancer cells to high ROS levels could serve as 
a novel target for killing cancer cells without deleterious 
effects on normal ones [281].

Photodynamic therapy of cancer
Cancer cells are subjected to laser light to produce a pho-
tosensitive agent at a specific wavelength called photo-
dynamic therapy (PDT). Unlike other treatments such as 
surgery, radiation, and chemotherapy, PDT is considered 
a secondary and highly promising non-invasive modal-
ity for cancer therapy [282]. It offers an encouraging 
approach as a supplementary treatment option for can-
cer patients [283]. The inorganic nature of TiO2 endows 
it with the capability to produce ROS when exposed to 
UV light in aqueous environments (Fig.  7). This ROS 
generation, which subsequently triggers cell death, posi-
tions TiO2 as a promising candidate for PDT, a therapeu-
tic approach utilized in the treatment of diverse diseases 
[284]. The versatility of TiO2-NPs, their nanocompos-
ites, and hybrid biomolecular forms has been extensively 
explored, revealing their potential as photosensitizing 
agents for cancer treatment and combating antibiotic-
resistant bacterial infections [285]. When TiO2-NPs are 
exposed to UV light with a wavelength below 385  nm, 
photoexcited electrons and holes are generated. Subse-
quently, these photoexcited electrons and holes can react 
with OH− or H2O, forming oxidative radicals capable of 
destroying microorganisms and tumor cells (Fig. 7).

The production of ROS by TiO2-NPs has been reported 
to function as effector signaling mediators in the 
p53-dependent apoptotic pathway. Upregulated expres-
sion of cytochrome c, cleaved caspase-3, and PARP, as 
observed through western blot analysis, further indi-
cated the induction of apoptosis via caspase activation 
(Fig. 7), highlighting the therapeutic promise of surface-
engineered TiO2-NPs. The generated ROS can damage 
the mitochondrial membrane and its functionality, sub-
sequently initiating the mitochondrial release of cyto-
chrome c into the cellular matrix, thereby triggering the 
intrinsic apoptotic cascade [286].

Theragnostic
The convergence of diagnostic and therapeutic 
approaches has given rise to a new field known as therag-
nostic. These strategies enable researchers and clinicians 
to precisely modulate molecular signaling cascades at the 
molecular level, which is particularly relevant in the con-
text of PDT [287]. In this regard, nanocomposites com-
prising zinc(II) phthalocyanine (MCZnPc) and MCZnPc 
anchored onto TiO2-NPs labeled with radioactive iodine 
(125I) were synthesized to evaluate their potential for 
anticancer applications. The researchers evaluated the 
efficacy of MCZnPc and MCZnPc-TiO2 nanocompos-
ites against HeLa (human cervical cancer) and EMT6 
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(mouse mammary cancer) cell lines. After a 3-hour incu-
bation period in the dark, the cells were exposed to light 
at a wavelength of 684 nm. The labeled nanocomposites 
exhibited enhanced cellular uptake, and the study dem-
onstrated the theragnostic potential of TiO2-NPs for can-
cer treatment [266]. In a recent study, the incorporation 
of samarium as a dopant into TiO2-NPs was shown to 
enhance the radiosensitivity and cellular toxicity of can-
cer cells. The doped nanoparticles exhibited increased 
X-ray absorption, leading to the generation of higher 
ROS upon irradiation compared to undoped TiO2-NPs 
[288]. TiO2-based platforms have been utilized for the 
detection of small biomolecules, cancer cells, and patho-
gens in blood samples through various techniques such 
as label-free microfluidic immunosensors, photoelectro-
chemical biosensors, field-effect transistors, and ampero-
metric methods [289].

Additionally, Nanoconjugates composed of TiO2, poly-
ethyleneimine (PEI), and folic acid (FA) have been devel-
oped to construct a controlled drug delivery system 
regulated by near-infrared (NIR) laser irradiation [290]. 
The induced and sustained delivery of TiO2 nanoparti-
cles facilitated by X-ray exposure can generate electron-
vacancy pairs, leading to the structural degradation of 
organic linkers within the nanoconjugates [291].

Biosensors
Nanosensors are minute yet highly perceptive devices, 
with at least one of their sensing dimensions measuring 
around 100 nm or less. These sophisticated instruments 
play a crucial role in detecting and evaluating intricate 
physical and chemical transformations. Moreover, they 
enable the observation of biochemical and biomolecular 

alterations within cellular environments, as well as the 
measurement of hazardous environmental contaminants 
[292] and optimizing electrochemical biosensors for the 
precise detection and quantification of toxic chemicals in 
food products to boost food safety protocols [293]. Bio-
sensors derived from nanomaterials possess remarkable 
capabilities, enabling highly sensitive and rapid detection 
of biological entities [294]. The recent fascination with 
innovative hybrid systems combining biomolecules and 
TiO2 nanostructures has resulted in substantial achieve-
ments in manufacturing bio-nano hybrid devices, such 
as biomolecule-sensitized solar cells (BSSCs) and photo-
electrochemical cells (PECs) [295].

In addition, the biosensors field was advanced through 
the integration of TiO2-NPs and biomolecules to form 
thin films that monitor patients’ responses to medica-
tion or surgical treatment [296]. However, for a biosensor 
to be commercially viable, it must meet specific criteria: 
cost-effectiveness, user-friendliness, sensitivity and accu-
racy, rapid response times, and the ability to be manufac-
tured efficiently with high selectivity rates [297].

TiO2 nanostructures have been utilized to fabricate a 
diverse range of sensing devices, encompassing humid-
ity, oxygen, and hydrogen sensors. These nanoscale semi-
conductors have proven their efficacy as exceptional 
electrode materials within biosensors, owing to their 
distinctive properties. Such properties include a porous 
architecture, providing a vast specific surface area, cou-
pled with outstanding biocompatibility [298]. TiO2 pos-
sesses the capability to function as an immobilizing 
matrix, engaging in reactions with the amine and car-
boxyl groups of enzymes while concurrently preserving 
their biocatalytic activity [299].

Fig. 7 Mitochondrial dysfunction and apoptotic pathways triggered by TiO2-NPs
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Recently, nanocomposites, including TiO2-NPs, are 
used in biosensors. For instance, nanocomposites con-
taining graphene oxide/TiO2-nanowires/chitosan were 
used to monitor the sequences of specific genes in Vib-
rio parahaemolyticus. The incorporation of TiO2 nanow-
ires in the nanocomposite significantly increased the 
interfacial area, thereby enhancing its sensing capabili-
ties [300]. TiO2-based biosensing of target analytes typi-
cally employs either electrochemical techniques (such as 
amperometric and potentiometric processes) or photo-
electrochemical (PEC) methods. This alteration manifests 
as a detectable current signal in the case of amperometric 
detection or a detectable potential or charge accumula-
tion for potentiometric detection [301]. PEC biosensors, 
which leverage the photoelectric effect, have emerged as 
a promising class of electrochemistry-based biosensing 
devices. These innovative sensors combine the benefits 
of both optical and electrochemical detection techniques, 
making them highly attractive for various applications 
[302].

Typically, a titanium dioxide-based PEC biosensing 
platform consists of three main components (Fig.  8). 
Firstly, a nanostructured TiO2 layer is fabricated on a 
conductive surface, acting as the working electrode (WE). 
This facilitates the generation and movement of electrons 

and holes upon exposure to light. Secondly, a catalytic 
counter electrode (CE) coated with an electron trans-
fer material is present. Finally, an electrolyte is placed 
between the two electrodes, facilitating the shuttling of 
holes to the counter electrode [296]. In PEC biosensors, 
the detection principle relies on photon-to-electricity 
conversion. The process involves photon absorption by 
the semiconductor, generating electron-hole pairs that 
separate and transfer to the working electrode and elec-
trolyte, respectively. The presence of the target analyte 
modulates the photocurrent generated, which correlates 
directly with the analyte’s concentration in the sample, 
enabling quantitative biosensing [302]. In TiO2-based 
photoelectrochemical biosensors, the transducer mate-
rial can take one of three forms: (a) consisting solely of 
TiO2, (b) a hybrid combination of TiO2 and inorganic 
semiconductors, or (c) a composite material where TiO2 
is combined with other substances.

Diverse biomolecules like enzymes and DNA have 
served as bio-recognition elements. When DNA is cou-
pled with TiO2, the presence of target DNA results in the 
formation or cleavage of double-stranded DNA, leading 
to a direct or indirect change in the light-harvesting per-
formance of the working electrode. Consequently, this 
alteration impacts charge separation and the generated 

Fig. 8 TiO2-based photoelectrochemical (PEC) biosensing platform
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photocurrent [303]. Quantum dots with narrow band 
gaps can sensitize TiO2-NPs and achieve energy band 
modulation. Cadmium sulfide nanoparticles (CdS-NPs), 
possessing a narrow band gap of 2.4 eV and a broad exci-
tation spectrum, are well-suited as sensitizing materials. 
The excitation of CdS -NPs leads to charge separation, 
facilitating the transfer of conduction band (CB) elec-
trons to the conduction band of TiO2. A recent hybrid 
material combining CdS QDs and TiO2-NTs has found 
application in the sensitive detection of prostate-specific 
antigen (PSA), a crucial biomarker for prostate can-
cer [304]. In this application, the CdS QDs were loaded 
onto the TiO2-NTs, which acted as transducers. The 
sensitization of TiO2 with CdS broadens the excitation 
wavelength range and enhances the photoelectric perfor-
mance of the TiO2 electrodes. Additionally, the coupling 
between CdS and TiO2 reduces the recombination of 
photo-generated electrons and holes, collectively leading 
to higher conversion efficiency [305]. When PSA is pres-
ent, an immune-sandwich assembly facilitates the attach-
ment of an immune-gold-labeled alkaline phosphatase 
(ALP) to the CdS QDs/TiO2 NTs electrode. ALP can cat-
alyze the hydrolysis of ascorbic acid 2-phosphate (AAP) 
in situ, thereby generating ascorbic acid (AA) for efficient 
electron donation. The results indicate that an increase 
in PSA concentration leads to an improved photocurrent 
response.

PEC biosensors can be combined with alternative 
detection techniques, enabling the development of bio-
sensors tailored to specific properties and behaviors. In 
a study, dye-sensitized solar cells (DSSCs) utilizing TiO2 
nanoparticulate films as the photoanode were integrated 
with a colorimetric DNA detection approach to sense a 
particular DNA sequence from Mycobacterium tuber-
culosis, resulting in a disposable biosensing device [306]. 
In another study, a nanocomposite consisting of g-C3N4 
and TiO2 nanosheets was employed to fabricate a photo-
electrochemical biosensor capable of detecting glucose 
with an impressive detection limit of merely 0.01 mM. 
The two-dimensional TiO2 nanosheets, possessing a high 
specific surface area, demonstrated promising potential 
for accommodating a substantial glucose oxidase load-
ing. Furthermore, to enable visible light excitation of 
the photoelectrochemical biosensor and avoid potential 
deactivation by UV radiation, g-C3N4 was incorporated 
to minimize the nanocomposite’s bandgap [307].

Biomedical imaging
There is a wide range of imaging techniques that can be 
utilized for scientific research and biomedical applica-
tions. These include spectroscopy methods like infrared 
(IR) spectroscopy and Raman spectroscopy, nuclear mag-
netic resonance imaging (MRI), radio-imaging using spe-
cific nuclides, computed tomography (CT) scanning, as 

well as more advanced scanning techniques such as laser 
ablation, inductively coupled plasma mass spectrometry 
(ICP-MS), and matrix-assisted laser desorption/ioniza-
tion mass spectrometry (MALDI-MS) [308]. Enhance-
ments in diagnostic techniques lead to preliminary 
treatment and improved recovery prospects for patients. 
Among nanoparticles, titanium dioxide nanoparticles 
TiO2-NPs are extensively researched and employed in 
diagnostic methods like MRI and CT scans, serving as 
contrast agents. Notably, TiO2-NPs become activated 
upon irradiation, enabling them to act concurrently as 
diagnostic tools and therapeutic agents.

A research study examined the image contrast capabili-
ties of TiO2-NPs using magnetic MRI and CT scanners. 
A clear distinction in imaging was detected between 
the control samples and those containing TiO2-NPs on 
T2-weighted MRI images. This finding suggests that 
TiO2-NPs could potentially serve as a novel theragnostic 
agent, offering both radio-sensitizing properties for ther-
apeutic applications and radiological diagnostic function-
ality due to chemical modifications on their surface [309]. 
According to the findings, in-depth investigations were 
carried out on in-situ tagging methodologies for fluores-
cence microscopy to mark the TiO2-NPs internalized by 
cells. The initial technique involved utilizing fluorescent 
biotin and fluorescent streptavidin to tag the nanopar-
ticles before and after cellular uptake. Conversely, in the 
second approach, copper-catalyzed azide-alkyne cyclo-
addition was employed for labeling and identification 
of azide-conjugated TiO2-NPs. Moreover, synchrotron 
X-ray fluorescence microscopy (XFM) was utilized to 
detect TiO2-NPs. The results showcasing TiO2-NPs by 
XFM exhibited remarkable alignment with the location 
of optical fluorescence as detected by confocal micros-
copy [310].

TiO2-NPs can be readily synthesized and modified, 
such as by incorporating europium(III) ions. Addition-
ally, hollow TiO2 nanoshells serve as viable two-photon 
nanoprobes. When coated with polyethyleneimine, these 
nanoparticles demonstrate an affinity for binding to 
HeLa cervical cancer cells, enabling their detection [311]. 
In another research, a nanostructure comprising a silver 
core surrounded by a silica shell and an outer mesopo-
rous titania coating (Ag@SiO2@mTiO2) was developed. 
The metallic silver core served to enhance fluorescence 
signals [312].

Agriculture applications
Contemporary advanced technologies, including aquatic 
farming, solar-powered greenhouses, genetic engi-
neering, multi-layer crop production, and anti-mold 
chemicals, have conferred substantial benefits to the agri-
cultural sector by enabling maximum yield production 
and the cultivation of off-season crops. However, these 
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technologies have also contributed to significant health 
and environmental concerns due to the improper utiliza-
tion of fertilizers and pesticides [313]. Nanotechnology 
is a rapidly evolving interdisciplinary domain focused on 
developing innovative technological tools to maximize 
crop yields and enhance plant protection.

The underlying strategy involves boosting plants’ ability 
to absorb essential nutrients more efficiently. Among var-
ious nanomaterials, extensive research efforts have been 
concentrated on exploring the agricultural applications of 
TiO2-based nanomaterials due to their distinctive struc-
tural properties, chemical stability, hydrophilic nature, 
and environmental compatibility [314]. The subsequent 
section highlights the applications of nanopesticides and 
nanofertilizers derived from TiO2-NPs.

TiO2-NPs as nanopesticides
Maintaining crop health by preventing diseases and pest 
infestations is a persistent challenge that drives the cre-
ation of novel solutions and agents. Chemical pesticides 
are employed to manage or eliminate microorganisms, 
unwanted plants, insects, and fungi. Nevertheless, exces-
sive pesticide usage can lead to severe health implica-
tions. Nanoparticles or nanoformulations of pesticides 
demonstrate greater efficacy compared to conventional 
pesticides (Fig.  9). This increased effectiveness could be 
attributed to improved absorption of the active ingre-
dients and higher bioavailability facilitated by NPs, 
consequently resulting in more efficient elimination of 
infectious agents [315].

TiO₂-NPs were employed to combat Spodoptera litto-
ralis, a polyphagous pest that infests various crops like 
cotton and vegetables such as tomatoes. An experiment 
tested six TiO₂-NP concentrations (31.25–1000 ppm) by 
feeding larvae leaves treated with these nanoparticles. 
Two weeks after application, mortality was assessed. The 
findings unequivocally demonstrated the toxic effects of 

TiO₂-NPs against S. littoralis larvae at all the concentra-
tions tested [316]. In another study, TiO₂-NPs were tested 
individually and in combination with ZnO-NPs to evalu-
ate their insecticidal efficacy against Bactericera cocker-
elli nymphs through laboratory and greenhouse studies 
on tomato plants. While leaf immersion bioassays were 
conducted in the laboratory, direct plant spraying was 
employed in the greenhouse. Results showed that TiO₂- 
NPs alone (100 ppm) and combined with ZnO -NPs 
(250 ppm) caused 99% and 100% mortality, respectively, 
after 96 h of treatment in the laboratory. However, in the 
greenhouse experiment, TiO₂- NPs (500 ppm) and TiO₂ + 
ZnO NPs (250 ppm) resulted in only 32% and 23% mor-
tality, respectively [317]. Also, a different study explored 
the insecticidal potential of TiO₂-NPs prepared via a 
green synthesis method using the aqueous leaf extract 
of Pouteria campechiana. The findings revealed that at a 
concentration of 900 µg/ml, the larvae and pupa of Aedes 
aegypti were dead [318].

TiO2-NPs loaded with fluorine and nitrogen were used 
to inhibit the Fusarium oxysporum growth in tomatoes 
under visible light conditions by destroying of fungal cell 
wall. The synergistic effects of TiO₂-NPs and the attached 
N & F resulted in a stronger toxic impact on the fungal 
strain, ultimately leading to its eradication. The genera-
tion of ROS under visible light illumination enabled the 
disinfection of the fungus. Consequently, these TiO₂-
NPs could be utilized for visible light-induced bacterial 
and fungal disinfection [248]. In another investigation, 
the antibacterial capabilities of TiO₂-NPs and TiO₂-NPs 
doped with silver (Ag) and zinc (Zn) showed high anti-
bacterial activity (in-vitro and greenhouse experiment) 
against Xanthomonas perforans that causing tomatoes 
spot disease at a concentration of 500–800 ppm under 
visible light conditions. This enhanced activity was attrib-
uted to the combinatorial effects of TiO₂ and the Ag and 

Fig. 9 The advantages of utilizing TiO2-NPs as nanopesticides for enhancing and improving agricultural yield
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Zn dopants [319]. Table  8 summarizes the activity of 
TiO2-NPs in agricultural sectors as nanopesticides.

TiO2-NPs as nanofertilizers
The incorporation of fertilizers can boost agricultural 
productivity. However, to address issues such as environ-
mental pollution and inefficient nutrient utilization, nano 
fertilizers emerge as a preferable option, potentially serv-
ing as a more effective and efficient alternative to conven-
tional fertilizers. Additionally, nano fertilizers contribute 
to enhancing soil quality by mitigating the detrimental 
effects associated with the excessive application of con-
ventional fertilizers [326]. TiO2-NPs can be utilized in 
the context of nanofertilizers via diverse approaches, 
such as foliar administration, seed pretreatment involv-
ing immersion, and soil hydroponic methods where 
TiO2-NPs are incorporated into the irrigation solution 
or combined with soil substrates [327]. Foliar spraying 
is a prevalent method for facilitating rapid absorption 
of TiO2-NPs through stomatal uptake and cuticle layer 
penetration. Their transport through cell walls and dis-
tribution within the plant vascular system is facilitated 
by their size and surface traits. Conversely, soil applica-
tions are frequently chosen due to its prolonged nutri-
ent release capability. TiO2-NPs are internalized by root 

hairs across the root epidermis, moving symplastically 
via plasmodesmata between cells, and subsequently 
transported upwards through stem vascular tissue to 
the leaves (Fig.  10).contributing to elevated chlorophyll 
levels, augmented photosynthetic efficiency, and conse-
quently enhanced plant biomass and yield (Fig. 11).

The choice of application technique hinges on the spe-
cific crop, its development phase, and intended objec-
tives. Foliar spraying is prevalent for its direct delivery of 
nanoparticles to photosynthetic tissues, while soil appli-
cation is favored for prolonged nutrient accessibility.

The influence of TiO₂-NPs, a nano fertilizer, was stud-
ied on spinach seedlings during their growth and devel-
opment stages. The treatment with TiO₂-NPs resulted in 
improved seed vigor and germination rates. Furthermore, 
at a 2.5% concentration of nanoTiO2, enhancements were 
observed in plant dry weight, Rubisco activity, chlo-
rophyll formation, and phytosynthetic rate during the 
growth phase [328].

Mahmoodzadeh and coauthors investigate the effects 
of TiO2-NPs on the seedling vigor of canola plants [329]. 
The authors reported that the seedling and radical growth 
of canola was increased at high TiO2-NPs concentration 
(2000 mg/L). In a related investigation, the plant growth 
(vegetative parts, male and female flower appearance) 

Table 8 Examples of TiO2-NPs used in the agricultural sector to control the infection with different pests, insects, and microbes
Nanoparticles 
treatment

Synthesized TiO2-NPs 
source

Target Host Results Refer-
ence

TiO₂-NPs Leaf aqueous extract of 
Pouteria campechiana

Aedes aegypti (larvae 
and pupa)

Not detected Maximum death of larvae and pupa was at-
tained at 900 µg/ml

 [318]

TiO₂-NPs Commercial with 
concentrations of 
31.25–1000 ppm

Tested against 
Spodoptera littoralis 
larvae

Cotton, tomatoes Toxic effects at all concentrations  [316]

TiO₂-NPs + ZnO-NPs Chemical
TiO₂ (100 ppm), ZnO 
(250 ppm)

Bactericera cockerelli 
nymphs

Tomato plants Causing 99% mortality under lab condi-
tions and 32% mortality under greenhouse 
conditions

 [317]

TiO₂-NPs (co-doped 
fluorine and nitrogen)

Not detected Fusarium oxysporum Tomatoes Completely eradicated fungal strain under 
visible-light condition

 [248]

TiO₂-NPs + Ag/Zn 
dopants

Commercial with con-
centration of 500–800 
ppm

Xanthomonas 
perforans

Tomatoes High antibacterial activity under visible light  [319]

TiO₂-NPs Desmostachya bipinnata Spodoptera litura and 
Aedes aegypti (larvae 
and pupa)

Not detected The highest mortality of 96% and 94% against 
A. aegypti and S. litura respectively was at-
tained at 900 µg/mL.

 [320]

Solanum trilobatum pediculocidal, and 
larvicidal activities

A subpictus 
and Hyalomma 
anatolicum

High mortality rate at
2–10 µg/mL of TiO2-NPs

 [321]

Beauveria bassiana Noctuidae pests Helicoverpa armig-
era and Spodoptera 
frugiperda

50% mortality of caterpillars with lower 
toxicity

 [322]

Moringa oleifera Bipolaris sorokiniana 
infection

wheat 40 mg/L of TiO2-Np was sufficient to reduce 
disease severity

 [323]

Bacillus thuringiensis Ephestia kuehniella 
larvae

Mediterranean 
flour moth

Potential nano pesticides, 74% larval mortality  [324]

Ag/Fe/TiO2-NPs Trichoderma harzianum Sclerotinia 
sclerotiorum

Anodontites 
trapesialis

Fungicidal action after 48 of TiO2-Np exposure  [325]
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Fig. 11 Advantages of utilizing TiO2-NPs as nanofertilizers to improve plant growth traits

 

Fig. 10 Foliar spray and soil irrigation routes of TiO2-NPs as nanofertilizers
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and phytosynthetic pigment content (chlorophyll, antho-
cyanins, and carotenoids) of Zea mays were affected by 
spraying of TiO2-NPs at various TiO₂-NPs concentra-
tions. The results showed that the 0.03% TiO₂-NPs con-
centration had a notable effect on chlorophyll a and b, 
carotenoids, total chlorophyll, and anthocyanins. Addi-
tionally, the pigmentation during the reproductive stage 
was improved upon TiO₂-NPs spray as compared with 
control. These activities could be due to the positive 
impact of TiO₂-NPs on the electron transport chain and 
photosynthesis processes, thereby boosting pigment pro-
duction [330].

Recently, TiO2-NPs formed by fruit peel extract of Cit-
rus medica were used to improve the Capsicum annuum 
yield [331]. Also, the foliar spray of TiO2-NPs on sunflow-
ers at a concentration of 2.6 mg/L led to improved physi-
ological traits and nutritional parameters and increased 
the content of oil [332]. Interestingly, the height of cori-
ander plants, as well as their physiological traits, carot-
enoid contents, total sugars, amino acids, and phenols, 
were improved as a result of spraying with TiO2-NPs at 
2, 4, and 6 ppm [333]. These studies collectively dem-
onstrate the potential of TiO₂-NPs to enhance various 
aspects of plant growth and development across varied 
species, highlighting their promising applications in agri-
culture (Table 9).

Environmental applications
Natural resources such as water, air, and soil are severely 
affected worldwide, and their recovery is difficult due 
to rapid population growth, urbanization, and indus-
trialization. Several reasons lead to water and soil con-
tamination. The main ones are the direct release of raw 
industrial effluents without treatment into rivers and 

sewage management, which interferes with the indis-
criminate use of pesticides and fertilizers in agriculture 
parties. Presently, the pollution of our environment is so 
widespread that it has turned into a critical issue. Water 
and soil are contaminated with harmful heavy metals, 
chlorinated compounds, or dyes. At the same time, the 
atmosphere is filled with noxious nitrogen oxides (NO), 
carbon monoxide (CO), volatile organic compounds, 
and chlorofluorocarbons (CFCs). Given the high levels of 
contamination, now is the time to employ advanced tech-
nology for monitoring and identifying these pollutants in 
our water and soil [339].

Nanotechnology has experienced remarkable advance-
ments in the field of environmental protection over the 
recent years [340]. Among its most promising contri-
butions are the significant applications in water and air 
remediation. The nano-size, surface area to volume ratio, 
chemical NPs stability, surface modifications, and shapes 
are considered the unique features of NPs, making them 
superior activity for environmental applications either 
in-situ or ex-situ [341]. Different types of available nano-
materials and nanotools are being utilized to remediate 
environmental contaminants [342]. Among the various 
materials, utilizing TiO₂-NPs as a remediating agent is 
witnessing a steady rise in applications such as water 
purification, air cleaning, and soil decontamination. The 
electronic band structure, high quantum efficiency, sta-
bility, and chemical inertness for TiO2-NPs enable them 
to be resilient and adaptable to diverse conditions and 
uses, especially for contaminant removal [343]. Table 10 
summarizes the activity of TiO2-NPs in removing soil 
and water contaminants.

Table 9 Summarizing the activity of TiO2-NPs in agricultural sectors as nanofertilizers
Synthesized by TiO₂-NPs Conc.

and type of treatment
Results Refer-

ence
Spinach seedlings 2.50%, seeds soaking Improved seed vigor, germination rates, plant dry weight, Rubisco activity, chloro-

phyll formation, photosynthetic rate
 [328]

Canola 2000 mg/L, seeds treatment Increased seedling and radical growth  [329]
Zea mays 0.03%, spraying Notable effects on chlorophyll a and b, carotenoids, total chlorophyll, anthocya-

nins, improved pigmentation during the reproductive stage
 [330]

Capsicum annuum Not detected Enhanced plant growth  [331]
Sunflowers 2.6 mg/L, foliar spray Improved physiological traits, nutritional parameters, increased oil content  [332]
Coriander 2, 4, and 6 ppm, spraying Improved height, physiological traits, carotenoid contents, total sugars, amino 

acids, phenols
 [333]

Wheat 25–100 µg/mL, foliar spray Reduced salinity and improved germination with 50 µg/mL TiO₂ -NPs  [87]
Rice 1000 mg/L, root exposure Stress tolerance at lower conc.  [334]
bell pepper 250 mg/L, leaves spray Increased disease resistance  [335]
Rice 750 mg kg− 1, irrigation Boosted crop yield and improved rhizosphere enzymatic activity  [336]
Moldavian balm 200 mg/L, added to nutrient 

solution
Increased volatile oil content under salt conditions  [337]

Vitex plant
Vitex agnus-castus L.

0-800 ppm, foliar spray Higher sugar content and boosted shoot and root dry weight mass  [338]
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Soil remediation
Soil contamination occurs due to the presence of hazard-
ous compounds, particularly heavy metals at toxic lev-
els. The sources of soil pollution include manufacturing 
activities, mining operations, and landfill sites containing 
industrial wastes like paint residues, electrical wastes, 
batteries, and industrial or municipal sewage [356]. 
Heavy metals pose a significant challenge as soil pollut-
ants because they are non-degradable and persist in the 
environment once introduced [357]. Numerous research 
studies have revealed intriguing findings pertaining to 
the use of TiO₂-NPs for soil remediation through the UV-
facilitated degradation of organic contaminants present 
in the soil [358].

The photodegradation of diphenyl arsenic acid (DPAA), 
a pollutant resulting from leakage of arsenic weapons 
with adverse health effects, has been studied using TiO2-
NPs. Various operational parameters like NP dosage, 
radiation time, light intensity, and soil-water ratio were 
optimized to enhance DPAA removal efficiency up to 
82.7%. While TiO₂-NPs don’t completely convert DPAA, 
they adsorb its inorganic arsenic byproducts, playing a 
crucial role in mitigating DPAA contamination through 
photocatalytic oxidation [344]. Another study investi-
gated the photocatalytic degradation of p-nitrophenol, 
a bio-refractory and toxic organic compound widely 
used in various industries, from contaminated soil using 
TiO2-NPs combined with pulsed discharge plasma. The 
mechanism involved removing p-nitrophenol from the 
soil and enhancing its degradation by increasing the 
pulsed discharge voltage. The authors proposed that the 
pulsed discharge plasma could drive the photocatalysis of 
TiO2-NPs. The report revealed that this approach could 

remove up to 88% of p-nitrophenol within just 10  min 
[345].

Also, a study examined the combined application of 
plant growth-promoting rhizobacteria (PGPR) and TiO2-
NPs for enhancing phytoremediation of cadmium (Cd) 
contaminated soil using Trifolium repens seedlings. The 
soil had 28% clay, 37% sand, 35% silt, 0.47% N, 7.1  mg/
kg phosphorus, and pH 7.8. Different doses of TiO2-NPs 
and PGPR were applied separately and in combination 
to analyze their effects on Cd uptake, plant growth, and 
chlorophyll content. The combined application promoted 
plant growth, increased chlorophyll content, reduced the 
required TiO2-NPs dosage for phytoremediation, and 
enhanced Cd uptake and T. repens growth in Cd-con-
taminated soil compared to individual applications. This 
highlights the potential synergistic effects of PGPR and 
TiO2-NPs for efficient phytoremediation of heavy metal-
polluted soils [346]. The combined application of biochar 
and TiO2-NPs was explored for phytoremediation of 
antimony (Sb) contaminated soil using Sorghum bicolor 
seedlings. The soil had a pH of 7.7, 1.12% N, 8.7 mg/kg 
phosphorus, 28% clay, 37% sand, and 35% silt. Different 
concentrations of TiO2 and biochar were applied individ-
ually and in combination to assess their effects on plant 
growth, Sb uptake and accumulation, and physiological 
responses in Sb-polluted soil. The results showed that 
the combined biochar and TiO2-NPs treatment positively 
influenced plant growth and significantly increased Sb 
accumulation compared to individual applications. The 
findings demonstrated the potential of this approach for 
efficient phytoremediation of heavy metal-contaminated 
soils [347].

Table 10 Examples of different TiO2-NPs and their rule in soil and water remediation
Contaminants Treatment Results Reference
Diphenyl arsenic acid (DPAA) TiO2-NPs DPAA removal efficiency up to 82.7%; adsorption of 

inorganic arsenic byproducts
 [344]

p-Nitrophenol TiO₂-NPs combined with pulsed discharge 
plasma

Removal of p-nitrophenol up to 88% within 10 min  [345]

Cadmium (Cd) TiO₂-NPs combined with plant growth-pro-
moting rhizobacteria (PGPR)

Enhanced Cd uptake, increased chlorophyll content, 
and promoted Trifolium repens seedlings

 [346]

Antimony (Sb) TiO₂-NPs combined with biochar Increased Sb accumulation and improve Sorghum 
bicolor seedlings

 [347]

lead (Pb) TiO₂-NPs adsorbents (0.1 g) using surfactants 97% of pb(ii) ions removal from contaminated soil  [348]
Cadmium (Cd) TiO₂-NPs synthesized by Trianthema portulacas-

trum and Chenopodium quinoa
Efficient cd removal from industrial wastewater  [349]

Cu²⁺ and Rhodamine B (Rh-B) TiO₂-NPs synthesized by Chlorella vulgaris High contaminants removal within 1 h.  [350]
Industrial textile dyes, methylene 
blue (MB) and Rh-B

TiO₂-NPs synthesized by durva herb High degradation activity of MB and Rh-B days after 
50 min

 [351]

Organic contaminants TiO₂/Arabic gum Degradation of ciprofloxacin and MB  [352]
Phenols TiO2/Algae Complex 98% phenol degradation after nearly 19 h  [353]
Methylene blue TiO₂-NPs synthesized by mulberry plant MB disintegration within 2 h  [354]
Organic Dyes (RB19 &RR76) TiO₂-NPs synthesized by Eichhornia crassipes 0.08 g of TiO2-NPs in 60 min. under U.V at PH = 1 

achieved complete degradation
 [355]
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Water remediation
Clean and fresh water is a vital necessity for daily life 
and the life cycle of living organisms. Recently, water 
resources have been highly contaminated with a wide 
range of pollutants as a result of human activities [359]. 
Among these contaminants are physical (such as impu-
rities that alter the water’s physical features), chemical 
(such as heavy metals and organic and inorganic pollut-
ants), and biological pollutants. These pollutants have 
negative and deleterious impacts on humans, animals, 
and the ecosystem [360]. Therefore, the treatment of 
wastewater based on nanoscience has been given more 
attention. Adsorption and photocatalytic-based nano-
technology are among the approaches for wastewater 
treatment that have gained a lot of traction due to their 
eco-friendliness, sustainability, and cost-effectiveness. 
Additionally, they offer various other advantageous 
properties that make them particularly suitable for tack-
ling the complex issue of water contamination [361]. 
In this regard, TiO2-NPs are widely employed in water 
remediation (Fig.  12) due to their unique physical and 
chemical features, highly biocompatible, robust oxida-
tion efficiency, and unparalleled photocatalytic proper-
ties [10]. This prominence has led to a surge in research 
focused on harnessing the potential of TiO₂-NPs for 
wastewater treatment, with numerous studies exploring 
their efficacy in this domain. 

Conclusion
In summary, this review underscores the pivotal role of 
TiO2-NPs in nanotechnology. The principal findings 
point out that TiO2-NPs showcase notable versatility 
and potential across diverse sectors, including biomedi-
cal research, agricultural advancement, and environmen-
tal restoration. Their distinctive characteristics, such as 
high surface area and photoactivation customize them 
for various medical and ecological applications, including 
targeted drug delivery, photodynamic therapy, and envi-
ronmental decontamination. The insights above empha-
size the need for continued exploration of bio-based 
synthetic techniques and detailed bioactivity mecha-
nisms, focusing on enhancing their efficacy and safety 
in healthcare applications and improving their usage in 
agronomic practices.

Future perspectives
The future of TiO2-NPs holds immense potential, with 
numerous exciting avenues awaiting exploration. By 
addressing current challenges, leveraging cutting-edge 
technologies, and fostering interdisciplinary collabora-
tions, researchers can unlock the full potential of these 
remarkable nanoparticles, driving innovation and 
advancing scientific frontiers across various domains.

Synthesis Advancements: The green and biogenic syn-
thesis routes for TiO2-NPs have gained traction owing 

Fig. 12 Enhanced photocatalytic activity of TiO2-NPs in organic pollutants degradation and their role in water remediation
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to their eco-friendly nature and sustainability. However, 
there is significant scope for optimization and scaling up 
these biological synthesis methods to achieve industrial-
scale production while maintaining monodispersity and 
precise control over nanoparticle size, shape, and crys-
tallinity. Integrating cutting-edge techniques, such as 
machine learning and computational modeling, could 
accelerate the design and development of novel biogenic 
synthesis strategies, enabling the tailored production of 
TiO2-NPs for specific applications.

Surface modifications and hybrid nanostructures: The 
surface chemistry of TiO2-NPs plays a pivotal role in 
determining their functionality and performance. Future 
research endeavors could focus on developing innova-
tive surface modification strategies, including doping, 
functionalization, and incorporating biomolecules or 
polymers. These approaches can potentially enhance the 
nanoparticles’ biocompatibility, stability, and targeted 
delivery capabilities, expanding their applications in bio-
medicine, sensing, and catalysis domains.

Moreover, integrating TiO2-NPs with other nanoma-
terials, such as graphene, carbon nanotubes, or quan-
tum dots, could give rise to hybrid nanostructures with 
synergistic properties. These hybrid systems may exhibit 
superior performance in areas like photocatalysis, energy 
conversion, and optoelectronics, paving the way for 
developing advanced technologies and devices.

Theragnostic applications: The remarkable photocata-
lytic and optical properties of TiO2-NPs have enabled 
their exploration in biomedical applications, including 
cancer therapy, antimicrobial treatments, and bioimag-
ing. Future research could delve into developing mul-
tifunctional TiO2-based nanoplatforms that seamlessly 
integrate diagnostic and therapeutic capabilities. Such 
theragnostic systems could facilitate early disease detec-
tion, targeted drug delivery, and real-time monitoring of 
therapeutic responses, ushering in a new era of personal-
ized and precision medicine.

Environmental remediation: The photocatalytic activ-
ity of TiO2-NPs has demonstrated promising potential in 
environmental remediation applications, such as water 
purification, air cleaning, and soil decontamination. 
Future efforts could focus on enhancing the photocata-
lytic efficiency and visible-light absorption of TiO2-NPs 
through doping, surface modifications, or developing 
hybrid nanostructures. Additionally, integrating TiO2-
NPs into sustainable and scalable technologies, such as 
membrane filtration systems or photocatalytic reactors, 
could facilitate widespread adoption in environmental 
remediation processes.

Interdisciplinary Collaborations: The multifaceted 
nature of TiO2-NPs necessitates multidisciplinary collab-
orations among researchers from diverse fields, includ-
ing chemistry, materials science, biology, medicine, and 

environmental engineering. Such collaborative efforts 
foster cross-pollination of ideas, enable the exchange of 
knowledge and expertise, and accelerate the translation 
of fundamental research into practical applications.
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