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Unlocking the potential of soil microbial 
communities for bioremediation of emerging 
organic contaminants: omics‑based approaches
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Abstract 

The remediation of emerging contaminants presents a pressing environmental challenge, necessitating innovative 
approaches for effective mitigation. This review article delves into the untapped potential of soil microbial communi-
ties in the bioremediation of emerging contaminants. Bioremediation, while a promising method, often proves time-
consuming and requires a deep comprehension of microbial intricacies for enhancement. Given the challenges pre-
sented by the inability to culture many of these microorganisms, conventional methods are inadequate for achieving 
this goal. While omics-based methods provide an innovative approach to understanding the fundamental aspects, 
processes, and connections among microorganisms that are essential for improving bioremediation strategies. By 
exploring the latest advancements in omics technologies, this review aims to shed light on how these approaches 
can unlock the hidden capabilities of soil microbial communities, paving the way for more efficient and sustainable 
remediation solutions.
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Introduction
“Emerging contaminants (ECs)” are pollutants that 
have a new origin, alternate route to humans, or 
require new techniques for treatment [1]. These pol-
lutants are divided into different categories accord-
ing to their chemical properties and sources, including 
organic, inorganic, biological emerging contaminants, 
and other unknown compositions like micro and nan-
oplastics. Emerging inorganic contaminants include 
engineered nanoparticles, radionuclides, and nuclear 
wastes. Biological contaminants such as pathogenic 
bacteria, antibiotic-resistant bacteria and resistance 
genes, viruses, and protein contaminants [2]. Emerging 

organic contaminants (EOCs) encompass a wide range 
of chemical compounds, including pharmaceuticals 
and personal care products (PPCPs), pesticides, endo-
crine disrupting compounds (EDCs), surfactants, 
flame retardants, plasticizers, and industrial additives, 
among others. Metabolites and intermediate degrada-
tion products of the original compounds are also part 
of the EOCs [3]. They can be produced and released 
from households, hospitals, laboratory wastewater, agri-
cultural processes, construction, landscaping transpor-
tation, or the food industry [1, 4–6]. Due to its unique 
filtering and buffering characteristics, the soil can 
absorb and retain most anthropogenic substances caus-
ing their accumulation in inland areas [7].

There are various health risks associated with EOCs, 
both in the short-term and long-term. These risks 
include abnormal physiological processes, higher can-
cer rates, increased toxicity potential of chemical mix-
tures, endocrine-disrupting effects, birth defects, infant 
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malformations, and diabetes [1, 8]. Moreover, frequent 
exposure to antibiotics as an emerging pollutant can lead 
to antibiotic resistance in specific pathogenic microor-
ganisms, making their treatment challenging [7, 8]. Con-
sidering their hazardous effects on humans and other 
biota, finding a remedial solution for removing EOCs 
sounds urgent.

Among various conventional, non-conventional, 
chemical, and physical treatment processes [9, 
10], bio-based remedial techniques (see Fig.  1 for 
more information) are known for being safer, more 
cost-effective, and require less energy than phys-
icochemical techniques [11, 12]. Bioremediation and 
biodegradation methods have the added benefit of 
being eco-friendly as they involve the interaction and 
cooperation of microbial consortia to remove con-
taminants [13, 14]. However, these interactions are 
complex and unpredictable, since more than 99% 
of microbial cells are difficult to culture using tradi-
tional techniques [13]. To address this challenge, the 
systems biology approach that combines geochemi-
cal data with biologically pertinent measurements 
can be used. This approach can detect contamination 
sources and propose remedial methods. It relies on 
biological materials that act as "biosignatures," such 
as genomes, proteins, lipids, metabolites, and tran-
scribed RNA [15, 16]. Omics-based studies that track 
these biosignatures are promising approaches giving a 

broad vision of biodiversity in microbial communities 
and their potential to remove persistent pollutants. 
Based on their enzymatic profile and/or their express-
ing genes, these methods employ innovative tools for 
discovering the hidden worlds of microorganisms and 
their potential. This target would be achievable by 
taking advantage of next-generation sequencing tech-
niques along with bioinformatics, and genomic/RNA/ 
microbial metabolic pathways/proteins databases that 
are the main tools of omics approaches [17, 18]. The 
use of omics methods has grown in importance for 
understanding and improving microbial-facilitated 
remediation of environmental pollutants. Genom-
ics, transcriptomics, proteomics, and metabolomics 
offer valuable insights into the microbial populations 
engaged in remediation and the underlying molecu-
lar processes [19]. These advanced techniques have 
empowered researchers to more comprehensively 
characterize the composition, operation, and changes 
of microbial communities in contaminated settings. 
Applying omics methodologies has facilitated the 
identification of new microbes and enzymes for biore-
mediation, as well as the enhancement of existing 
microbial communities for more effective contami-
nant elimination [20]. This, in turn, aids in pinpoint-
ing the crucial microbes and enzymes responsible for 
breaking down pollutants. Studies based on omics 
have revealed previously unknown microbial pathways 

Fig. 1  Sources, hazards, and available removal methods of emerging compounds, including physical, chemical, and biological approaches. AOPs: 
Advanced oxidation processes. Created with BioRender.com
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and genes crucial to the degradation of diverse envi-
ronmental toxins such as pesticides and industrial 
chemicals [19, 21, 22].

Soil contains a wide variety of microbial communities 
with many potential remedial properties, some of which 
have been discovered while others remain unknown. The 
absorption of pollutants by plants from the soil can lead 
to harm in ecosystems as they move up the food chain 
[23–25]. The presence of different microorganisms in 
the soil drives the process of bioremediation, leading to 
the breakdown of contaminants through the interactions 
of a community of microbes. The effectiveness of biore-
mediation relies on the capacity of these microorgan-
isms to adjust to changing environmental circumstances 
[26]. In this regard, culture-independent omics-based 
approaches are the key methods to unlock the unde-
tected side of this potential. Despite the fact that there 
are reviews related to soil bioremediation, there is still a 
need to investigate the potential of soil microbial popu-
lations in breaking down emerging organic contami-
nants with the help of novel and more accurate omics 
approaches. So, in this review, we aim to address the lack 
of information on using omics approaches to remediate 
soils contaminated with emerging organic pollutants and 
the way through the future of this field.

Emerging organic contaminants: a threat 
to the environment and biota
Emerging organic contaminants (EOCs) and their metab-
olites, which are frequently more toxic than their initial 
source, have been found in a variety of environments 
[27]. Emerging organic contaminants (EOCs) do not 
have established environmental monitoring or emission 
standards and can have harmful effects on ecosystems 
and human well-being. Because of their potential risks to 
the environment and human health, continuous release 
into the environment, and the challenge of fully removing 
these substances even with advanced wastewater treat-
ment plants (WWTPs), EOCs may require future regu-
latory attention. Recent advancements in environmental 
analysis have resulted in frequent detection of these sub-
stances in various settings such as sewage, surface water, 
drinking water, and soil [28].

In vivo studies have shown that exposure to EOCs can 
cause hormonal imbalance, decreased aquatic organ-
ism survivability, reproductive issues, and a variety of 
health problems in humans, including cancer, diabetes 
mellitus, respiratory disorders, neurological disorders, 
metabolic diseases, and thyroid disease [29–31]. This is 
a cause of concern as some EOCs like Perfluorooctanoic 
Acid (PFOA) and Perfluorooctanesulfonate (PFOS) have 
been found in wildlife, drinking water, human serum, and 
breast milk [29]. Additionally, EOCs can be harmful to 

other living beings such as birds, fish, insects, and non-
target plants [30]. Generally, based on scientific research, 
the immediate and long-term impacts of these environ-
mental contaminants on ecosystems, natural resources, 
human health, and the environment have been proven 
[32] (Table 1).

Bioremediation: a convenient way to remove EOCs 
from the soil
For the contaminated soils, sediments, and water reme-
diation, bio-based removal techniques such as phy-
toremediation and microbial-based bioremediation/
biodegradation offer a financially advantageous and 
eco-friendly alternative to conventional physicochemical 
treatments that combined with biostimulation and bio-
augmentation techniques speed up microbial activities 
in polluted sites [40, 41]. The type of pollutant, environ-
mental conditions, and accessibility of phosphorus and 
nitrogen supplies all impact biodegradation efficiency 
[42, 43]. Moreover, factors including the type of micro-
organisms used, the screening situation, and the genetic 
profile of the organisms can affect microbial activity [44]. 
Even though biodegradation is considered a safe and eco-
friendly technology to remove synthetic chemicals from 
the environment, it is important to consider that the pro-
cess should not introduce more harmful substances into 
the environment than there originally were [45].

Microbial bioremediation refers to using micro-
organisms or their byproducts, such as enzymes 
(including cytochrome P450, laccases, hydrolases, 
dehalogenases, oxygenase, dehydrogenases, proteases, 
transferases, oxidoreductases, and lipases) [46–48], or 
their leftover biomass, to remove contaminants from 
the environment. Oxidoreductases and hydrolases are 
the two groups of enzymes with high biodegradation 
activity [49]. The former is responsible for detoxify-
ing toxic organic compounds through oxidative cou-
pling. This leads to the breakdown of chemical bonds 
and the transfer of electrons via oxidation–reduction 
reactions, resulting in the oxidation of contaminants 
to harmless substances. Oxidoreductases and peroxi-
dases are present in bacteria, fungi, and higher plants 
[49, 50] and could play a role in the decomposition of 
lignin and the humification of phenolic and aromatic 
substances in soil [51, 52]. Additionally, they can 
detoxify toxic xenobiotics by polymerization, copo-
lymerization, or binding to humic substances [50, 
53]. Laccases belonging to oxidoreductase enzymes 
are powerful oxidizers of pesticides, PhACs, and hor-
mones that could be purified from white-rot fungi [54, 
55]. Pleurotus ostreatus as an example could remove 
bisphenol A. Their potential to degrade persistant 
compounds is mainly related to lignolytic enzyme 
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production, making them xenobiotic-tolerant micro-
organisms. Monooxygenase as an oxidoreductase 
enzyme integrates oxygen atoms with the substrate in 
the reduction reactions and also performs hydroxyla-
tion, denitrification, ammonification, dehalogenation, 
and sulfurization of the substrate [50]. Buttiauxella 
sp. S19-1 as an example is a TNT-degrading bacterium 
with oxydoreductase activity [56]. In addition, hydro-
lytic enzymes play a role in disrupting chemical bonds 
of toxic compounds, and reducing their toxicity [49, 
50]. This makes them effective agents for biodegrading 
oil spills, organophosphates, and carbamate pesticides. 
Hydrolases catalyze condensation and alcoholysis 
reactions. They are advantageous due to their avail-
ability, lack of cofactor stereoselectivity, and tolerance 
to water-miscible solvents. Lipase is an enzyme from 
the group of hydrolases that plays a role in the decom-
position of organic oil pollutants, and its mechanism 
is the conversion of triacylglycerols into glycerol and 
free fatty acids [49]. Eventually, when contaminants 
reach the metabolic pathways for degradation and bio-
transformation, microorganisms can degrade them via 
their own or modified metabolic processes [49].

Despite several reports that focused on single strains’ 
ability to biodegrade pollutants, microbial communi-
ties or consortiums of microbial strains are known to 
be more effective in remediation, especially in natural 
conditions. This is due to their co-metabolism that 
lessens cross-reactions and the metabolic pressure on 
single strains of the community [57]. Because of the 
cooperation of diverse species in consuming a com-
pound as a substrate, microbial consortia frequently 
operate better and are more resistant in polluted 
settings; as a result, they are more efficient at biore-
mediation than particular single-strain microorgan-
isms [17, 58]. Both bacterial and fungal intracellular 
and extracellular enzymes are being used to remedi-
ate the resistant contaminant [59, 60]. Due to the fact 
that bacteria grow more quickly and fungi produce 
stronger enzymes, fungal and bacterial consortia typi-
cally outperform single-strain cultures in their ability 
to break down resistant contaminants [61, 62]. As an 
example of the decolorization of a single dye, the bac-
terial and yeast consortium (Brevibacillus laterosporus 
and Geotrichum candidum) produced faster decolori-
zation rates than the individual microbiological spe-
cies [63]. Studies have shown that the joint activities of 
enzymes of mixed microbial cultures are much better 
in removing some pollutants compared to individual 
strains [63] which is why microbial populations in the 
consortia structures are promising organizations for 
biotreating degradation-resistant pollution.

However, it is important to ponder the drawbacks and 
risks associated with bioremediation for a more effec-
tive utilization of this method. These concerns include 
the comparably slow pace of the process in compari-
son to other remediation technologies, as well as the 
limitation in completely removing all amounts of con-
taminants. It is important to note that this method may 
not be suitable for cleansing certain mineral pollutants 
or organic compounds. Additionally, there are chal-
lenges in confirming the complete elimination of con-
taminants. Furthermore, during the decomposition of 
toxic compounds, there is a possibility of generating 
more toxic byproducts. On the other side, during biore-
mediation processes, there is a possibility that organic 
nutrients like animal manure and sewage sludge might 
carry antibiotic residues and resistant bacteria. Anti-
biotic resistance has the ability to disseminate glob-
ally through horizontal gene transfer, influencing both 
targeted and non-targeted microbial communities. 
The transfer has the potential to contribute to the rise 
of antibiotic-resistant strains and may impact human 
health by diminishing the efficacy of antibiotics in treat-
ing bacterial infections. These limitations are therefore 
crucial considerations when assessing the use of biore-
mediation for specific contaminated sites [64–66].

Some microorganisms and their effective enzymes in 
the biodegradation of emerging organic compounds are 
listed in Table 2.

The way through discovering the composition 
and function of EOC‑degrading microbial 
populations: omics approaches
To understand the soil ecosystem, it is necessary to dis-
cover its microbial population, activities, and how they 
interact with the soil compartments [78]. This vision in 
a specific ecological niche has been given more weight 
by molecular approaches such as genomics, proteom-
ics, transcriptomics, metabolomics, fluxomics, etc. [79]. 
The gathered data from different "omics" methodolo-
gies is then refined to offer adequate in-depth informa-
tion to study microbial metabolism in bioremediation 
and provide full knowledge of the soil microbial popula-
tion, their functional and key genes, mechanism of tox-
icity, and interaction details. [78, 80] (Fig.  2). Applying 
omics techniques, it is possible to investigate the changes 
in expression profiles associated with the degrada-
tion of compounds (proteomics), to identify and quan-
tify specific metabolites that arise during degradation 
(metabolomics), and changes in the gene expression that 
accompany the exposure of microorganisms to pollutants 
(transcriptomics) [16].

Omics approach can reveal the specific genetic 
determinants, metabolic pathways, and regulatory 
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mechanisms that enable certain microbes to thrive in 
contaminated conditions. This knowledge can guide the 
selection and engineering of more effective inoculant 
strains [81, 82]. Omics can also elucidate how introduced 
inocula interact with the native microbiome, includ-
ing competition, cooperation, and succession processes 
that impact colonization success. This informs strategies 
to better integrate inocula into the existing community 
[82, 83]. Omics can reveal the specific abiotic and biotic 
stressors in contaminated sites that limit inoculant sur-
vival and proliferation, guiding the development of more 
stress-tolerant strains [83].

Genomics and metagenomics provide insights into 
the genetic makeup and metabolic capabilities of 
microbial communities involved in bioremediation [84, 
85]. This allows researchers to identify microbes with 
desirable traits for degrading pollutants, tolerating 
harsh conditions, and thriving in contaminated envi-
ronments [86, 87].

Transcriptomics and proteomics reveal the genes and 
proteins that are actively expressed by microbes dur-
ing bioremediation, shedding light on the molecular 

mechanisms underlying pollutant degradation and 
stress responses. This knowledge can guide the engi-
neering of more effective bioremediation strains or 
consortia [85, 88]. Metatranscriptomics and metaprot-
eomics can track the activity and expression of target 
inoculant strains within the complex environment, 
allowing researchers to evaluate and optimize their 
performance [81, 89].

Metabolomics profiles the small molecule byproducts 
of microbial metabolism, tracking the flow of carbon, 
energy and nutrients during bioremediation. This helps 
optimize nutrient amendments, electron donors, and 
other environmental conditions to maximize microbial 
activity and pollutant removal [84].

Integrating multi-omics data provides a systems-level 
understanding of plant–microbe interactions, micro-
bial community dynamics, and the complex biological 
processes involved in bioremediation. This enables pre-
dictive modeling and rational design of robust, efficient 
microbial inoculants and bioremediation strategies [85].

Table 2  EOC-degrading microorganisms and enzymes

Microorganism Enzyme Compound References

Schizophyllum commune IBL-06 Lignin peroxidase Diclofenac [49, 67]

Trametes versicolor and Pycnoporus san-
guineus CS43, Pleurotus ostreatus

Laccase Bisphenol A, PCBs (polychlorinated biphe-
nyls)

[49, 68–70]

Nocardioides sp. C190, Pseudomonas, Rhodoc-
occus erythropolis

Atrazine dechlorinase, triazine hydrolase Triazine herbicides [68, 71, 72]

Aspergillus niger NCIM 563 Phytase Organo phosphate [68, 71]

Pseudomonas sp. LBr Glyphosate oxidase (GOX) Glyphosate (pesticides) [43, 73]

Pleurotus sp. Laccase, manganese peroxidase, lignin 
peroxidase

Degradation of Azo dyes [74]

Ganoderma lucidum Laccase, manganese peroxidase, lignin 
peroxidase

Degradation of phenanthrene and pyrene [74]

Stropharia coronilla Manganese peroxidase biodegradation of benzo(a)pyrene [74]

Phanerochaete chrysosporium Peroxidases (Lignin peroxidase & manga-
nese peroxidase)

Degradation of pesticides (atrazine & ala-
chlor), nitroaromatic compounds

[71, 74]

Trametes versicolor Laccase Degradation of herbicide isoproturon, 
anthracene, and benzo(a)pyrene

[71, 74]

Bacillus subtilis Laccase & Esterase Biodegradation and detoxification of Cyper-
methrin (insecticide), Bisphenol A (BPA)

[74, 75]

Trametes versicolor Laccase Degradation of Carbofuran [74]

Candida antarctica (CAL),
Candida rugosa (CRL)

Lipases Poly (bisphenol-A carbonate) (BPAPC) [76]

Bacillus subtilis, Bacillus pumilus, Chromobac-
terium viscosum, and Sphingobacterium sp. 
strain S2

Lipase PBSA, PLA, PCL, oil, and PBS [77]

Pseudomonas aeruginosa PA1 Carboxylesterases Malathion and parathion (insecticide) [71]

Humicola sp. Cellulase Detergent and washing industrial contami-
nants

[71]
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Role of metagenomics in the identification of effective 
EOC‑degrading microorganisms/genes
The systematic study of microbial communities at the 
genome level is called metagenomics. Over 99% of 
microorganisms that live in various natural habitats 
are either difficult or impossible to cultivate, leading to 
major limitations on processes that rely on culture. This 
method makes it possible to explore a sample’s entire 
genome sequence (genomics) and an enormous amount 
of genome that is straightly extracted from the environ-
ment (metagenomics) [90].

The following steps could be taken to acquire metagen-
omics data [91–93], including:

	 I.	 Sampling and processing: Samples should be repre-
sentative and appropriate DNA extraction methods 
should be used.

	II.	 Sequencing technology: Metagenomic sequenc-
ing has shifted from Sanger sequencing to next- 
generation sequencing (NGS) technologies, 
such as the 454/Roche, Illumina/Solexa sys-
tems, Pyrosequencing, PacBio, and Ion torrent 
sequencing.

	III.	 Assembly: Short-read fragment assembly is used 
to construct longer genomic contigs through co-
assembly and de novo assembly methods.

Fig. 2  Available omics-based methods to discover emerging pollutants’ remedial potential in the soil microbial communities. Each approach has its 
standard procedure and available techniques, giving different information from diversity to the metabolic potential of the microbial communities. 
Created with BioRender.com
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	IV.	 Binning: Organizing assembled contigs into collec-
tions based on their probable taxonomic or func-
tional classifications. This step is substantial for 
data analysis and finding key players and/or genes 
in the community.

	V.	 Annotation: Assigning functions to genes or gene 
products based on their similarity to known pro-
teins or gene products in databases.

	VI.	 Statistical analysis: Measurement of alpha and beta 
diversity and the detection of differentially abun-
dant taxa or functions, could be interpreted from 
metagenomic data outcomes using statistical analy-
sis.

	VII.	 Data storage and sharing: To ensure that the find-
ings of various investigations can be compared and 
contrasted and in order to develop metagenomic 
datasets, the extracted data should be deposited 
into databases.

The metagenomic approach with pure DNA can take 
two paths: (1) bioactive compounds screening in clones 
of the metagenomic library which is now obsoleted 
(function-based) [94–97] and (2) complete genomic 
DNA sequencing (sequence-based). The extracted data 
of metagenomics contain information on the microbial 
communities, including their diversity and taxonomic 
characterization at the community level and their func-
tional and metabolic potential. Predicting the commu-
nity’s functional capabilities and nutritional requirements 
provides the key insights needed to formulate selec-
tive media that will support the growth of these elusive 
microorganisms [94, 98–100].

Metagenomics has identified biomolecules such as 
antibiotics and microbial enzymes. It also helps to 
explore the hidden potential of bioremediation-relevant 
microbes [78]. Genomic-based identification of new pro-
moters, genes, and degradative pathways has helped to 
develop more efficient pollutant-degrading strains for 
bioremediation [101]. Key bioremediant bacterial genera 
like Pseudomonas, Shewanella, Deinococcus, and Dehalo-
coccoides have their whole genome sequences available, 
and detecting novel genes in such strains could provide 
insights into their degradation ability and substrate selec-
tivity [102].

By analyzing the whole genome of a biomass sample, 
it is possible to identify the different levels of microbial 
taxonomy and pathways for breaking down xenobiotic 
compounds, both aerobically and anaerobically [103]. 
Garrido-Sanz, D. et  al. (2018) isolated and analyzed a 
Polychlorinated Biphenyls (PCBs) biodegrading bac-
terial consortium through 16S rRNA amplicon and 
whole genome shotgun sequencing. Pseudomonas and 
Rhodococcus strains were abundant in this consortium, 

harboring enzymes that catalyze biphenyl to benzo-
ate and benzoate to Tricarboxylic Acid (TCA) cycle 
intermediates. The study demonstrated that metagen-
omic analysis can identify bacteria and their specific 
reactions and pathways involved in biodegradation 
processes [104]. The possible potential of Bacillus, 
Krasilinkoia, Lysinibacillus, Rhodococcus, Sphingob-
ium, Rubrivivax, Paenibacillus, Nitrate Reducers, and 
Enterobacter species in remediation of azithromycin-
contaminated soil was also another achievement of this 
approach [105]. Pseudomonas, Achromobacter, Xan-
thomonas, Stenotrophomonas, and Cupriavidus were 
found to be major players in atrazine bioremediation in 
the study of Bhardwaj et al. (2019) using whole metage-
nome sequencing [106]. Streptomyces nigra LM01 is a 
cornfield-isolated strain that also efficiently degrades 
atrazine and nicosulfuron. atzA/trzN were identified 
in its whole genome, indicating its possible potential 
to dechlorinate atrazine to hydroxyatrazine or convert 
it to cyanuric acid [107]. In another study based on a 
metagenomic fosmid library, the ability of soil micro-
organisms in polycyclic aromatic hydrocarbon degra-
dation was assessed. Extradiol dioxygenases encoding 
genes and Rieske non-heme iron oxygenases were iden-
tified in a complex microbial network. These enzymes 
are responsible for activating aromatic compounds by 
substituting methyl groups to their side chains [108].

Microbial degradation is regarded as the most 
appropriate technique for degrading chlorimuron-
ethyl, a common long-term residual sulfonylurea her-
bicide. Rhodococcus erythropolis D310-1 is a strain 
that harbors CarE, participating in the catalysis of 
chlorimuronethyl de-esterification through the cata-
lytic action of carboxylesterase. This provides new 
insights into the process of sulfonylurea herbicide deg-
radation as well as the theoretical datasets for enzymes 
[109]. Organophosphates (OPs) such as chlorpyrifos 
(CP), are another type of pesticide that impairs soil 
fertility and disturbs the biogeochemical cycle. Pseu-
domonas aeruginosa RNC3 and Stenotrophomonas 
maltophilia RNC7 are common soil bacteria that have 
significant CP breakdown potential. The genomes 
contain annotations for degradation processes and 
metabolism of aminobenzoate, chlorocyclohexane, 
chlorobenzene, toluene, and naphthalene. Organo-
phosphorus hydrolase and 4-nitrophenol 4-monooxy-
genase are the major enzymes of the aminobenzoate 
degradation pathway which play important roles in CP 
breakdown. Furthermore, results demonstrated that 
phenolic compound oxidation is the most impor-
tant step of CP biodegradation. Together with opd 
and opch2 genes, a series of putative CP degradation 
genes were expressed in RNC3 and RNC7 including 
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metallophosphoesterase (OPCH2) and phosphotri-
esterase encoding genes [110].

In a recent study, Cao and colleagues (2024) dis-
covered a novel Klebsiella pasteurii strain capable 
of degrading the herbicide mesotrione. This strain 
exhibited exceptional adaptability to environmental 
conditions. Through genomic analysis and RT-qPCR, 
the researchers identified the nitroreductase-encod-
ing genes nfsA and nfsB as key players in mesotrione 
biodegradation, a finding that had not been reported 
before [111]. In another study, Sun et  al. (2024) used 
diethyl terephthalate (DET) as a screening substrate 

to discover a new amidohydrolase gene, AmiH52, in 
a soil metagenomic library. The recombinant enzyme, 
expressed in E. coli, demonstrated both esterase and 
amidohydrolase activities. It exhibited highly specific 
activity towards p-nitrophenyl butyrate and the abil-
ity to degrade various amide herbicides. AmiH52 was 
found to be particularly effective against the herbicide 
propanil, showing the most potent degradation activ-
ity [112].

Table  3 introduces the potentially EOC-degrading 
microbial cells and consortioms, discovered through 

Table 3  EOC-degrading microbial communities that have been identified through genomic/metagenomic approaches

Microorganism/Microbial consortia Method and Platform Contaminant References

Sulfuricurvum spp., Pseudomonas spp., and 
Candidatus saccharibacteria

16S rRNA/Illumina MiSeq Hydrocarbons and their derivatives [113]

Rhodococcus, Sphingomonas, and Pseu-
domonas

Shotgun metagenome sequencing/Illumina 
HiSeq

HCH, Endosulfan, and DDT pesticides [114]

Acinetobacter johnsonii LXL_C1 Whole genome sequencing/Illumina HiSeq 
and PacBio

Cyprodinil [115]

Clostridium, Nocardioides, Bellilinea, Anaero-
linea, Longilinea, and Phycicoccus

16S rRNA/Illumina Miseq Cypermethrin, fipronil, imidacloprid, and sul-
fosulfuron

[116]

Geobacter, Mycobacterium, and Sphingo-
monas

16S rRNA/Ilumina MiSeq Polycyclic aromatic hydrocarbons (PAHs) [117]

Cellvibrio bacteria, Acidobacteria (such 
as Candidatus Koribacter and Candidatus 
Solibacter)

16S rRNA/Illumina Miseq Acetaminophen (APAP) [118]

Pseudomonadaceae, Rhizobiacaea, Desul-
fobacteriacea, Deinococcaceae, Bacillaeace, 
Sphingiomonadaceae, Xanthomonadaceae, 
and Enterobacteriaceae, Paneibacilleacea, 
Bradyrhizobacea

16S rRNA/IonTorrent Azithromycin [105]

Pseudomonas mendocina, Brevundimonas 
olei, Serratia marcescens, Sphingomonas

16S rRNA/Illumina Miseq Polycyclic aromatic hydrocarbons (PAH) [119]

Acinetobacter spp. Metagenomic libraries (BAC and fosmid 
clone DNAs)/Illumina HiSeq

Toluene [120]

Sphingobium fuliginis ATCC 27551 Whole genome sequencing/Pacbio RSII 
and Illumina Miseq

Neurotoxicorganophosphate insecticides [121]

Nocardioides carbamazepini sp. nov Shotgun metagenome sequencing/Illumina 
MiSeq

Carbamazepine and ibuprofen [122]

Thermobifida fusca, Pseudomonas mendocina, 
and Nocardia sp.

Shotgun metagenome sequencing Different types of plastic wastes [123]

Actinomycetales, Gemmatimonadetes, Proteo-
bacteria, Acidobacteria, and Bacteroidetes

Shotgun metagenome sequencing/Illumina 
HiSeq

Di(2-ethylhexyl) Phthalate (DEHP)
(a plasticizer)

[124]

Pseudomonas, betaproteobacteria and Rho-
dococcus, Bordetella, Stenotrophomonas sp., 
Achromobacter and Variovorax

16S rRNA/Shotgun metagenome sequenc-
ing/Illumina MiSeq

Polychlorinated Biphenyls (PCBs) [104]

Proteobacteria, Acidobacteria, Actinobacteria, 
Chloroflexi, Firmicutes, and Gemmatimona-
detes

16S rRNA/Illumina Miseq and Illumina Hiseq Perfluorinated Compounds (PFCs) [125]

Bradyrhizobium, Mycobacterium, Rhodop-
seudomonas, Pseudomonas, Cupriavidus, 
and Streptomyces, Rhodococcus, Starkeya, 
Rhizobium, Sphingomonas, Ochrobactrum, 
Methylobacillus, Alicycliphilus and Steno-
trophomonas

Shotgun metagenome sequencing/Illumina 
HiSeq

Carbamazepine (CBZ), triclocarban (TCC), 
and triclosan (TCS)

[126]
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genomic or metagenomic-based approaches in past 
years.

Transcriptomics and metatranscriptomics: identification 
of the active EOC‑degrading genes
In order to understand the functional activities of the soil 
microbial communities, it is necessary to study transcrip-
tion gene profiles, named "transcriptomics or metatran-
scriptomics" [17, 127]. The analysis of mRNAs allows 
for a clear understanding of gene expression in specific 
cells and tissues (Fig.  2). This includes determining the 
presence or absence of transcripts, evaluating alterna-
tive splicing to predict protein isoforms, and quantita-
tively assessing how genotype influences gene expression 
through the analysis of expression assessable trait loci 
or allele-specific expression [79]. While transcriptomics 
examines the gene expression profile of a single organ-
ism at a particular growth stage, metatranscriptomics 
examines this profile for the microbial community by 
extracting RNA from an environmental sample. The best 
procedures would involve complete mRNA extraction 
and enrichment, cDNA synthesis, microarray hybridi-
zation of cDNA, RNA-Seq, and reference mapping of 
sequence reads. The most important step is selective 
mRNA enrichment by rRNA depletion, followed by 
mRNA transcript sequencing [128, 129]. The two main 
techniques used nowadays to determine the transcrip-
tional profile for virtually every biological sample under 
a wide range of circumstances are microarrays and RNA-
Seq [130]. Using this approach and based on the Illumina 
HighSeq2500 sequencing method, Sharma et  al. (2019) 
indicated that Archaea play a more substantial role in 
the nitrification process in metal and pesticide-contam-
inated soil than bacteria, demonstrating their active role 
in contaminated environments. This domain displays 
strong expression of transcripts for the glyoxalase and/
or bleomycin resistance dioxygenases, 4-hydroxyphe-
nylpyruvate dioxygenase, 2-nitropropane dioxygenase, 
metapyrocatechase, ring hydroxylating dioxygenases, 
and intradiol dioxygenase (from Novosphingobium spp.) 
genes related to aromatic hydrocarbon degradation in 
agricultural soil [131]. Understanding the key metabolic 
pathways involved in the biodegradation of xenobiotics 
and EOCs is a significant area of research in molecular 
biology. Studying the metabolic pathways in the bio-
degradation of chlorimuron-ethyl by Rhoococcus eryth-
ropolis D310-1 revealed toluene and aminobenzoate 
degradation as key pathways. During this process, essen-
tial genes like carboxylesterase, cytochrome P-450, and 
glycosyltransferase were identified through qRT-PCR 
experiments [132]. Brzeszcz et al. (2020) investigated the 
potential of seven non-pathogenic bacterial strains from 
the genera Rhodococcus, Mycolicibacterium, Dietzia, 

Pseudomonas, Arthrobacter, and Gordonia as bioaug-
mentation agents in soil historically contaminated with 
aliphatic and polycyclic aromatic hydrocarbons. They 
evaluated the effects of biostimulation and bioaugmenta-
tion on the transcriptomic profiles of the soil. The study 
found that Gammaproteobacteria and Actinobacteria 
classes were associated with alkane monooxygenase 
(AlkB) transcripts, with a significant proportion attrib-
uted to Pseudomonas and similarities to genes from 
Mycobacteriaceae, Gordonia, and Arthrobacter genera 
[133]. Comparing and analyzing the microbial commu-
nity of biobed systems before and after a pesticide usage 
season in the field, Russell et al. (2021) showed a signifi-
cant rise in the aromatic and xenobiotic degradation-
related genes, including peroxidases, monooxygenases, 
and cytochrome P450. Metagenomic and metatranscrip-
tomic analyses encourage approaches in which pesticides 
are removed in biobeds as the result of a complex net-
work of interacting biodegrader activities that are highly 
enriched with bacteria: Pseudomonas, Sphingobium, 
and Oligotropha. Sharma et  al. (2017) also conducted a 
metatranscriptome analysis on agricultural soil that has 
been exposed to chemical fertilizers and pesticides for 
many years, estimated to be polluted with heavy metals. 
It was discovered that the ecosystem contains a variety 
of organisms, with bacteria being the most prevalent, 
including Achromobacter, Pseudomonas, Bacillus, Sphin-
gobium, Micrococcus, Serratia, and Streptomyces species. 
A high abundance of aromatic dioxygenase transcripts, 
related to breaking down Catechol, Benzoate ring, and 
Gentisate was also found in the sample [134]. Through 
metatranscriptomic research, it has been revealed that 
pesticide treatment and exposure to other EOCs will 
alter the microbial diversity of the soil. How this altera-
tion will affect the functionality of the microbiota is the 
role of metatranscriptomic analysis [135]. Reducing the 
abundance of Mesorhizobium, Rhodopseudomonas; and 
Stenotrophomonas, a genus known to break down xeno-
biotics is one of the findings of this approach in this sub-
ject [136].

Metatranscriptomic could also be a tool to compre-
hend the microbial communities and their capacity to 
degrade organic contaminants in the soil. In this way, 
Singh et  al. (2018) looked at the metatranscriptome 
data of wheat rhizosphere samples. According to their 
analysis, a total of 118 transcripts belonging to 47 dis-
tinct enzymes associated with 21 pathways involved 
in the breakdown of aromatic compounds. The abun-
dance of aromatic amines degradation-related tran-
scripts, and those related to carbazoles, benzoates, 
and naphthalene degradation, the ketoadipate path-
way, phenols, biphenyls, and xenobiotics removal in 
the soil samples suggest that these substances can be 
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degraded effectively. 2-hydroxy-6-oxo-6-phenylhexa-
2,4-dienoate hydrolase is a specific enzyme, frequently 
found in various aromatic-degrading metabolic path-
ways, including carbazole, biphenyl, and central meta-
cleavage pathway. The taxonomic analysis showed that 
the predominant communities that play a role in the 
degradation of aromatic compounds were bacteria, 
particularly Proteobacteria, Actinobacteria, Firmicutes, 
Bacterioidetes, and Cyanobacteria. These findings 
imply that the soil’s aromatic contaminants are signifi-
cantly removed by microbial communities connected 
to crop rhizospheres [137]. While being the key play-
ers, microorganisms are not the only sectors of the 
bioremediation and biodegradation process, especially 
in the soil with intricate interactions between micro-
organisms and plants. Metatranscriptomics in this 
regard, could be used to decode these interactions that 
are the driving force of resistant pollution removal. In 
other words, co-metabolism will increase the efficiency 
of bioremediation in many cases. Focusing on the col-
laboration between plants and microorganisms using 
tripartite metatranscriptomics, Tartaglia et  al. (2022) 
conducted a mesocosm metatranscriptomic study on 
the rhizospheric soil containing Festuca arundinacea 
roots. The occurrence of extraction, degradation, and 
metabolism of xenobiotics detected in contaminated 
soil illustrates the phytoremediation process carried 
out through a tripartite activity involving plants, bacte-
ria, and fungi. The presence of Actinobacteria and fungi 
has been found to be high, which could have an effect 
on the success of the remediation process. Some tran-
scripts have been linked to PAH degradation includ-
ing laccase, monooxygenase, and peroxidase. These are 
protocatechuate 3,4-dioxygenase, protocatechuate 4,5 
dioxygenase, salicylate 1-monooxygenase, naphthalene 
1,2 dioxygenase, and 4,5-dihydroxyphthalate decar-
boxylase. The majority of transcripts associated with 
protocatechuate 3,4-dioxygenase and protocatechuate 
4,5-dioxygenase were from Actinobacteria, particularly 
the Nocardioides and Streptomyces genera [138]. deMe-
nezes et al. (2012) discovered a grown concentration of 
transcripts linked to dioxygenase, stress response, and 
detoxification as a result of phenanthrene exposure in 
soil microbial communities [139]. Willow rhizospheres 
cultivated in contaminated soils were notably sup-
plemented in transcripts related to PAH degradation, 
mainly belonging to the orders Actinomycetales, Rho-
dospirillales, Burkholderiales, Alteromonadales, Soli-
rubrobacterales, Caulobacterales, and Rhizobiales [140, 
141]. The response of Arthrobacter QD15-4, isolated 
from plastic-contaminated soils to dimethyl phtha-
late (DMP), a prevalent environmental pollutant, was 
studied by Wang et al. (2019). This strain demonstrated 

the ability to break down DMP under the effect of the 
expression of specific genes associated with energy 
metabolism and ABC transporters in this bacterium. 
Notably, under DMP exposure, there was a notable rise 
in the intermediate metabolites pyruvic acid and cit-
rate, indicating that Arthrobacter QD15-4 responded 
to DMP by modulating its metabolic pathways and 
transporters [142]. The bacterial strains Burkholderia 
zhejiangensis CEIB S4-3 and Burkholderia cenocepacia 
CEIB S5-2 can break down the pesticide methyl para-
thion (MP) and its byproduct p-nitrophenol (PNP) due 
to specific genes in their genomes (mpd gene and pnp 
gene cluster) [49] as well as those genes involved in 
sensing environmental changes, responding to stress, 
and degrading aromatics. qRT-PCR confirmed their 
importance in defense against MP and PNP toxicity. 
Genomic data shows CEIB S5-2 has genes for efficient 
PNP degradation via different pathways, making it a 
strong candidate for pesticide removal [143]. A tran-
scriptomic study revealed gene expression changes 
during MP and PNP breakdown, highlighting roles in 
energy production, transport, metabolism, and stress 
response. Transporter genes play a key role in facili-
tating PNP entry and counteracting its toxicity during 
biodegradation. Overall, these Burkholderia strains 
possess the genetic tools to degrade MP and PNP effec-
tively, with CEIB S5-2 showing promise for pesticide 
remediation [144].

Proteomics and metaproteomics: identification 
of the active microbial communities and their 
EOC‑biodegradation progress
The profile of proteins, enzymes, and peptides that have 
different levels of expression in a particular circumstance 
is referred to as the proteome [128]. A thorough and 
adequate investigation is produced by proteomics, which 
offers a detailed analysis of the variations in protein 
composition as well as how they function and interact. 
Networks of protein–protein interactions, gene expres-
sion, and regulation are studied in proteomics research 
[145–147]. Predicting microbial functional activities has 
become feasible, due to the rapid advances of metapro-
teome and metatranscriptomics (Fig.  2). A new outlook 
for the biodegradation of toxins is opened by the prot-
eomics approach, which allows to identification and char-
acterization of new proteins that participate in a variety 
of metabolic pathways including stress response, trans-
portation, energy metabolism, or transcription regulation 
[80]. Nowadays, proteome research is used directly on 
the microbial community (meta-proteomics) to under-
stand how they function within a specific ecosystem. This 
can be very helpful in figuring out whether a microorgan-
ism has the ability to break down any compound that is 
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present in the sample [148]. Metaproteomics techniques 
like Mass Spectrometry (MS) and Two-Dimensional 
Electrophoresis (2-DE) have advanced our understand-
ing of microbial biodegradation pathways by revealing 
the key catabolic enzymes involved [129]. For proteomic 
analysis, a biological specimen must first be prepared. 
Then, proteins must be extracted and separated using 
SDS-PAGE or 2D-GE. Next, experimental data must be 
generated, collected, and analyzed using software for gel 
image analysis, such as PDQuest (BioRad) and Image-
Master 2D/Melanie. Finally, proteins must be identified 
and characterized using microbial protein identification 
technology like MALDI-TOF mass spectrometry. Flex 
Analysis (v. 3.3) and BioTools may be used to visualize 
spectra and identify tandem-MS (MS/MS) proteins, and 
the findings could be connected to commercial prot-
eomic search engines like MASCOT to search for the 
protein-sequence databases listed under the NCBI num-
ber [147, 149].

In a groundbreaking study, Pankaj et  al. (2016) pio-
neered a proteomic approach to investigate the resist-
ance of Bacillus thuringiensis SG4 to cypermethrin, a 
pesticide commonly found in agricultural soil. After a 
five-day incubation period, the researchers conducted 
a comparative proteomic analysis of the bacterium with 
and without exposure to cypermethrin. By extracting 
the differential whole-cell extracellular proteome from 
the active bacterial isolate SG4 and analyzing it using 2D 
electrophoresis, they identified the cypermethrin-resist-
ant proteins in Bacillus thuringiensis strain SG4. The 
analysis also showed that cypermethrin-resistant bacte-
ria exhibited decreased activity in certain dehydrogenase 
enzymes, including those that act on formate, glycerol-
3-phosphate, isocitrate kinase, and phosphatase, as well 
as malate and ketoglutarate semialdehyde. Furthermore, 
the induction of cypermethrin led to the down-regula-
tion of the translocase subunit Sec A protein in Bacillus 
thuringiensis SG4. Prominent proteins in the resistant 
bacteria included NAD kinase, ATPase pumps, ATP syn-
thase, and transferases. The majority of the altered pro-
teins were closely linked to various cellular processes, 
such as stress response, cypermethrin-degrading catabo-
lism, protein synthesis and modification, gene regulation 
and transcription, energy production, and chemotaxis 
[150].

To understand how the strain S. paucimobilis 20006FA 
breaks down phenanthrene and accumulates intermedi-
ate metabolites, Macchi et al. (2018) analyzed its genome 
and compared predictions to experimental proteomic 
analyses. To investigate the strain’s reaction to the phen-
anthrene, the proteome of S. paucimobilis 20006FA was 
analyzed by 2D-GE. The peptides were evaluated using 
an ultraviolet MALDITOF/TOF. Proteomic analysis 

revealed several enzymes were related to transform-
ing phenanthrene into TCA intermediates, which were 
upregulated by phenanthrene. Analyzing the distinct 
proteins revealed that they consisted of one NahA1f 
(alpha subunit of naphthalene dioxygenase), catechol 
dioxygenase, dihydroxybiphenyl dioxygenase, glutathione 
S transferases, and various enzymes involved in the lower 
metabolic pathway such as 2-hydroxymuconic semial-
dehyde hydrolase and 4-oxalocrotonate decarboxylase, 
among others. The abundance of dioxygenase enzyme-
coding genes in the genome suggested a sizable potential 
for aromatic biodegradation through the salicylate and 
protocatechuate pathways. Additionally, this strain was 
able to degrade other PAHs such as anthracene, dibenzo-
thiophene, and fluoranthene. Through genomic analysis, 
they identified 126 potential genes that encode enzymes 
involved in all steps of phenanthrene degradation, which 
may also be involved in the breakdown of other PAHs 
[151].

Bastida et al. (2016) examined the effects of oil contam-
ination on the potential of bioremediation using compost 
amendment. They used fatty acid and metaproteomics 
analysis to investigate the biomass, evolutionary relation-
ships, and physiological responses of the microbial com-
munity in polluted semiarid soils. The fatty-acid analysis 
was performed by using a Trace Ultra Thermo Scientific 
gas chromatograph, and Mass spectrometry was used 
for proteome analysis. They revealed Proteobacteria 
dominated at the phylum level among bacteria with the 
abundance of Rhizobiales, Sphingomonadales, and Cau-
lobacterales families, while Ricketsiales, Rhodospirilla-
les, and Rhodobacterales made up no more than 10% of 
the Proteobacterial proteins. In the contaminated soils, 
there was a lower concentration of Rhizobiales proteins. 
As opposed to the corresponding control microcosms, 
Caulobacterales significantly increased in the oil-spiked 
treatments. After compost treatment, Sphingomonadale 
abundance increased, and Actinobacteria made up to 
17% of the identified bacterial proteins of the microbial 
community in addition to Proteobacteria. Oil pollution 
caused a decline in Actinobacterial proteins and regard-
less of the various treatments, Burkholderiales made up 
the majority of the identified Proteobacterial proteins, 
accounting for about 95%. Pseudomonadales and Entero-
bacterales were the sources of up to 84% of the Proteo-
bacterial proteins. Actinomycetales, which accounted for 
nearly all of the Actinobacterial proteins and increased in 
abundance in oil-spiked treatments and compost addi-
tion, dominated the Actinobacteria phylum. The addition 
of compost resulted in a significant reduction in PAHs 
and alkane concentrations that was primarily carried out 
by Sphingomonadales and uncultured bacteria, as their 
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catabolic enzymes’ abundance such as catechol and cisdi-
hydrodiol dehydrogenases showed [152].

Williams et  al. (2010) investigated the microbial com-
munity proteome in toluene-amended soil and its 
microbial inoculation cultures. They used a Proteomics 
Analyzer MALDI-TOF/TOF mass spectrometer for pro-
tein analysis. The two toluene-impacted groups shared 
multiple identical proteins, including Tuf (elongation 
factor Tu), glutamine synthetase, amino acid transport-
ers, extracellular solute-binding proteins, outer mem-
brane proteins, and cell surface-associated proteins like 
arginine deiminase (ArcA) and ornithine carbamoyl-
transferase (ArcB). The microbial communities in tolu-
ene-affected soil and cultures, but not in those affected 
by glucose, contained: GroEL (chaperonin), TolC (outer 
membrane protein), CspA (cold-shock protein), ArcA 
(arginine deiminase), SucC (succinyl-CoA synthetase), 
OmpF (outer membrane protein F), succinate dehydro-
genase, ABC transporters, glutamate synthetase (Gln), 
extracellular solute-binding proteins, and outer mem-
brane proteins (Omp). This suggests that these proteins 
may play a role in toluene removal. CspA and ArcA were 
present in toluene-amended cultures, while SodB and 
GroEL were found in microbial protein from toluene-
amended soil. 16S rRNA gene analysis of the bacterial 
communities in toluene-added soil revealed a significant 
degree of dominance, with members of the Bacillus spe-
cies accounting for 80% of the OTUs. Additionally, the 
toluene enrichment experiment identified ArcA and 
CspA, which showed a considerable increase in cultures 
of Pseudomonas putida DOT-T1E grown in the presence 
of toluene [153].

Metabolomics: identifying the metabolites 
during the biodegradation of EOCs
Metabolomics describes the response of microbial 
communities to particular biological factors, abiotic 
pressures, and their environment at a given moment. 
Production of a variety of metabolites or metabo-
lomes in contact with natural environment stimula-
tion is an important part of the study of metabolomics 
[154, 155]. The development of models that can be 
used for the prediction of microbiological activity in 
bioremediation strategies has been facilitated by these 
approaches [79] (Fig.  2). Researchers have conducted 
studies to investigate the metabolites produced dur-
ing the biodegradation of pollutants via two main 
strategies: global untargeted metabolomics and tar-
geted metabolomics. The first approach is preferred 
when there is no prior information available to iden-
tify the metabolites and generates large amounts of 
data that can be compared between samples. Using 
this approach, Keum et  al., (2008) analyzed the 

comparative intracellular metabolome of Sinorhizo-
bium sp., including fatty acids, polyhydroxyalkanoates, 
and polar metabolites during phenanthrene degra-
dation. Their study revealed an increase in the fatty 
acids profile, TCA and glycolysis intermediates, and 
accumulation of trehalose as the product of the phen-
anthrene breakdown in the cell. A few amino acids, 
such as glycine, homoserine, and valine, also exhib-
ited a rise during the metabolism of phenanthrene. 
While presence of sulfur amino acids and nicotinic 
acid showed possible oxidative stress conditions dur-
ing phenanthrene metabolism [21, 156]. The second 
metabolomics approach is called targeted metabo-
lomics which is used to identify specific metabolites 
or metabolic pathways from known databases. The 
workflow for metabolomics involves selecting a bio-
logical sample, extracting and purifying metabolites 
through chromatography, and then analyzing the data 
using mass spectrometry or NMR spectroscopy to 
identify metabolites by comparing them with various 
databases and libraries [79, 157]. HPLC, GC–MS, and 
NMR spectroscopy were used by Moody et al. to inves-
tigate the metabolism of Mycobacterium vanbaalenii 
strain PYR-1, which degrades benzanthracene. It has 
been demonstrated that benzanthracene breaks down 
to generate dihydroxylated and methoxylated inter-
mediates, which are then directed into the main car-
bon pathway [128, 158]. A frequently used pesticide 
is carbofuran. The internal and extracellular metabo-
lites of the Chryseobacterium sp. BSC2-3 strain, which 
was chosen from a soil sample, was examined using an 
LC–MS-based metabolomics approach by Park et  al. 
(2022). The BSC2-3 strain demonstrated the ability to 
convert carbofuran into 3-hydroxycarbofuran exter-
nally. Through intracellular metabolite analysis, it 
was observed that carbofuran primarily impacted the 
breakdown of aminobenzoate, the synthesis of ubiqui-
none and terpenoid-quinone, as well as the metabo-
lism of arginine and proline. Furthermore, the strain 
was found to produce compounds that induce disease 
resistance and regulate plant growth. Moreover, the 
study identified the genes responsible for producing 
indole-3-acetic acid, a potent auxin [159]. In 2018, 
Tian et  al. used stable isotope-assisted metabolomics 
(SIAM) to analyze soil contaminated with 13C-labeled 
fluoranthene, pyrene, and benzoanthracene. They 
identified metabolites and pathways, detected ring-
cleavage products, and found sulfate conjugates of 
dihydroxy compounds as major metabolites, suggest-
ing that fungi may contribute to the biotransformation 
of pyrene and benzoanthracene in soil [160].

Fluxomics is a method used to measure and analyze the 
rates at which metabolic reactions occur and the changes 
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in these rates within a living organism. It involves study-
ing the entire set of metabolic fluxes within a cell, which 
provides valuable information about various cellular 
processes. This collection of metabolic fluxes, known 
as fluxomic, is considered a unique characteristic of the 
cell. By comparing labeling patterns obtained through 
appropriate labeling distribution, fluxomics can effec-
tively determine and describe the distribution of meta-
bolic reactions within a cell [20, 21] and aims at capturing 
the dynamic nature of phenotypes and functional inter-
actions between the genome and the environment [96, 
161]. Being based on metabolite data, which is far less 
abundant than that from proteins and genes, fluxomics 
offers numerous benefits over proteomics and genomics 
[162, 163]. However, to the best of our knowledge and 
according to our searches, there is no report on using this 
approach in the case of biodegrading potential in the soil.

Multiomics analysis to unlocking the mechanistic 
biodegradation of EOCs
Thermophilic bacteria have shown great potential in 
remediating various pollutants, including azo dyes, DBG, 
and imidacloprid. Researchers have employed omics 
approaches, such as proteomics, metabolomics, and 
genomics, to gain insights into the biodegradation mech-
anisms employed by these microorganisms. Zhang et al. 
(2022) isolated a thermophilic bacterial strain, Anoxy-
bacillus sp. PDR2, from soil to address azo dye efflu-
ent remediation. Through proteomic and metabolomic 
analyses, they identified crucial transport mechanisms, 
such as ABC transporters and two-component systems, 
involved in the stress response. The bacterium was found 
to self-synthesize a redox mediator, riboflavin, essential 
for the biodegradation process. Anoxybacillus sp. PDR2 
utilized glucose as an energy source, employing the 
TCA cycle and pyruvate metabolism to generate energy 
in vivo, transferring NAD to the electron transport chain, 
and ultimately facilitating degradation. Overexpression 
of acetoacetate synthase and malate synthase G during 
biodegradation, as indicated by proteomic data, mediated 
energy supply [164]. An et al. (2020) investigated a ther-
mophilic microbiota’s ability to break down DBG using 
metagenomic sequencing and qRT-PCR to understand 
gene actions. Through quantitative metaproteomics, they 
identified specific DBG-degrading associated proteins, 
such as NADH ubiquinone reductase and NADH-qui-
none oxidoreductase subunit, linked to the TCA cycle 
and glycolysis pathways. These proteins produced reduc-
ing equivalents crucial for breaking down DBG. Their 
analysis also highlighted the role of FAD/NAD (P)-bind-
ing protein in the biodegradation process [165]. These 
studies demonstrate the power of omics approaches in 
unraveling the biodegradation mechanisms employed by 

thermophilic bacteria. By identifying key enzymes, trans-
port systems, and metabolic pathways involved in pollut-
ant degradation, researchers can develop more efficient 
bioremediation strategies and optimize the use of these 
microorganisms in environmental remediation efforts.

Using a multiomics approach, Gautam and colleagues 
(2023) explored the imidacloprid biodegradation poten-
tial of Agrobacterium sp. InxBP2 through whole genome 
sequencing. Enzymes like FAD-dependent monooxy-
genase, amidohydrolase family protein, and ABC trans-
porters were identified, showing similarity to known 
imidacloprid-degrading enzymes. Proteomics analysis 
revealed distinct metabolic processes in imidacloprid-
treated samples compared to controls, a finding sup-
ported by metabolomics (GC–MS analysis) [166].

Conclusions and future perspectives
To successfully remove persistent pollutants like EOCs 
through biodegradation or bioremediation in their natu-
ral environments, it is crucial to understand and recog-
nize the composition, structure, unrealized potential, and 
interactions between microbial communities and other 
inhabitants of the surrounding environment. In order to 
gain a deeper understanding of microbial populations, 
high-throughput metagenomics and metatranscrip-
tomics would be preferable to traditional sequencing-
based methods. However, these innovative methods and 
approaches are unable to properly address the range 
of microbes and pathways involved in bioremediation. 
This might be addressed by employing metaproteom-
ics and metabolomics approaches to precisely identify 
the enzymes and metabolites present in contaminated 
areas. The fluxomics approach can also help determine 
the most significant and effective compounds produced 
during bioremediation by evaluating the flow and quan-
tity of metabolites under certain conditions. As tech-
nology advances in sequencing, chromatography, and 
mass spectrometry, it is expected that identifying the 
biodegradation pathways in microorganisms become 
easier. Despite the developing advancement of omics 
approaches that led biological science to the "omics age", 
revolutionized investigation of microbial diversity and 
their undiscovered bioremediation abilities, uncovering 
the mysterious properties of this complicated and puis-
sant network requires more multiapproach research to 
clarify the potential of microbial consortia. Integrated 
omics allows for the correlation of genome contents 
with proteins, enzymes, and final metabolites produced 
during bioremediation in microorganisms making it a 
standard method for analyzing microbial consortia. This 
insight enables metaomics to discover all biotechno-
logically relevant features within a natural consortium. 
Although omics approaches have significantly advanced 
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our understanding of microbial communities in biore-
mediation, there are still limitations and potential risks 
that need to be carefully considered and addressed for 
successful field-scale implementation. Although omics 
approaches give extensive insights into microbial com-
munities, there are still gaps in our knowledge of their 
complex interactions and dynamics in contaminated 
locations. On the other hand, the analysis and interpreta-
tion of huge data sets generated by omics techniques can 
be complex, demanding specialized bioinformatics tools 
and knowledge. So, it might be challenging to antici-
pate unexpected ecological impacts when manipulating 
microbial populations using omics-guided bioremedia-
tion. Furthermore, bioremediation-based techniques may 
not always result in total pollutant removal, and leftover 
contaminants might still pose environmental and health 
concerns. Another gap is overcoming barriers to scaling 
up omics-based bioremediation technologies from the 
lab to the field. Soil heterogeneity, fluctuating environ-
mental conditions, and complex pollutant mixes may 
restrict the direct implementation of lab-based omics 
findings. Furthermore, it is necessary to integrate omics 
data with other monitoring and modeling approaches 
in order to gain a broader view of bioremediation sys-
tems. Combining omics data with geochemical data and 
engineering concepts can result in better-informed soil 
remediation decisions. Creating numerical models and 
simulating omics data using sophisticated algorithms 
to improve the prediction of contamination reduction 
and microbial metabolism in polluted environments, as 
well as creating meaningful databases from the massive 
amount of omics data generated, in order to facilitate 
knowledge extraction and application in bioremediation 
may solve some of these limitations.
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