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Abstract 

Background: Low‑cost sustainable feedstocks are essential for commercially viable biotechnologies. These feed‑
stocks, often derived from plant or food waste, contain a multitude of different complex biomolecules which require 
multiple enzymes to hydrolyse and metabolise. Current standard biotechnology uses monocultures in which a single 
host expresses all the proteins required for the consolidated bioprocess. However, these hosts have limited capac‑
ity for expressing proteins before growth is impacted. This limitation may be overcome by utilising division of labour 
(DOL) in a consortium, where each member expresses a single protein of a longer degradation pathway.

Results: Here, we model a two‑strain consortium, with one strain expressing an endohydrolase and a second strain 
expressing an exohydrolase, for cooperative degradation of a complex substrate. Our results suggest that there is a 
balance between increasing expression to enhance degradation versus the burden that higher expression causes. 
Once a threshold of burden is reached, the consortium will consistently perform better than an equivalent single‑cell 
monoculture.

Conclusions: We demonstrate that resource‑aware whole‑cell models can be used to predict the benefits and 
limitations of using consortia systems to overcome burden. Our model predicts the region of expression where DOL 
would be beneficial for growth on starch, which will assist in making informed design choices for this, and other, 
complex‑substrate degradation pathways.

Keywords: Microbial consortia, Division of labour, Resource‑aware whole‑cell modelling, Consolidated bioprocesses, 
Synthetic biology
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Background
Agricultural waste as low‑cost feedstock for biotechnology
Existing methods for biotechnology primarily use pro-
cessed sugar feedstocks, which are high-cost and non-
sustainable. Recycling agricultural waste for use as cheap 
and sustainable feedstocks for microbes will enable more 
cost-effective bioproduction, capable of competing with 

traditional industrial practices. To achieve this requires 
organisms engineered to hydrolyse and metabolise the 
complex biomolecules found in plants, such as lignin, 
cellulose and starch. Many attempts have been made to 
engineer desirable production into naturally lignocel-
lulolytic or saccharolytic hosts, or to engineer substrate 
hydrolysis into optimised industrial production hosts 
[1, 2]. However, both methods have failed to achieve the 
high yields needed for a viable commercial process in a 
single host monoculture [3, 4]. One of the primary limi-
tations to a consolidated bioprocess in a single host has 
been attributed to the finite energy pool and high inter-
ference between the components and with the host [5–7].
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Burden and division of labour
The energetic and resource cost of expressing heterolo-
gous proteins is known as gene expression burden. In 
the model organism Escherichia coli this burden is pri-
marily attributed to the energetic cost of translation 
elongation and inefficient use of translational resources 
[8, 9]; for example, ribosomes wastefully sequestered 
on transcripts during ribosomal traffic jams. The result 
is a limited expression level of heterologous genes that 
can be achieved in a single cell before the burden causes 
decreased growth rates and reduced product yields [10, 
11].

One method to reduce the burden of heterologous gene 
expression is division of labour (DOL) between mem-
bers of a microbial consortium (Fig.  1) [12, 13]. Since 
fewer proteins need to be expressed in each cell, com-
petition between heterologous and endogenous genes 
for shared cellular resources is decreased [14, 15]. DOL 
has been used for the production of a wide range of use-
ful molecules, including anthocyanins [16], flavonoids 
[17], n-butanol [18], 3-amino-benzoic acid [19] and 
tryptamine [20].

Importantly, DOL may assist in the design of consoli-
dated bioprocesses. Efforts to engineer utilization of lig-
nocellulosic biomass into desirable bioproduction hosts 
have been complicated by the number and complexity of 
the degradation enzymes required. DOL can overcome 
the limitations of these design efforts by reducing the 
burden imposed on each cell and enabling an alternative 

means of optimising the expression of each gene in 
parallel. For example, Tsai, Goyal & Chen engineered 
four different strains of Saccharomyces cerevisiae, each 
expressing a different subunit of the cellulosome. Alter-
ing the ratio of the four strains in the consortium allowed 
them to optimise the processes of cellulose hydrolysis 
and ethanol production [4, 21, 22].

DOL and computational modelling
Computational models can assist in the design of DOL 
strategies. A broad range of approaches are used for 
this, including genome-scale metabolic models (GEMs) 
[23] and agent-based models [24, 25]. Of interest here, 
are coarse-grained modelling approaches called host-
aware models, which consider the relationship between 
heterologous protein expression and host cell growth. 
These models have been used to identify key factors ena-
bling co-culture to outperform monoculture [26, 27]. 
For example, modelling has assisted in the design of a 
glucose-acetate cross-feeding consortium by identify-
ing the range of burden within which the consortium is 
stable [27, 28]. Tsoi et al. [29] used a phenomenological 
approach to model 24 different pathway architectures for 
DOL, which allowed them to identify when burden is sig-
nificantly limiting in the monoculture and when the cost 
of transporting intermediates becomes a limiting factor 
for consortia.

Most coarse-grained models of consortia use simple 
phenomenological relationships between increasing 

Fig. 1 Division of labour for complex substrate degradation. a In monoculture all heterologous components of a degradation pathway are 
expressed in a single cell. This typically causes significant burden by consuming limited cellular resources and interfering with essential host 
bioprocesses. b In a multicellular system the labour is divided between cells, reducing the burden on each individual cell. Expression in each cell 
can be optimized in parallel and the ratio of the different cells can be used to control flux through each step of the pathway
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expression and decreasing growth, treating the mech-
anisms behind this relationship as a black/grey box. 
In contrast, more mechanistic host-aware models for 
monocultures have been proposed which explicitly 
model the intracellular trade-offs and resource allo-
cations that characterise burden. This includes the 
dynamics for shared cellular resource pools such as 
ribosomes [30], global cellular feedback to regulate pro-
tein production [31], and external regulation from var-
ying environments [32]. Coarse-grained models which 
account for cellular resource-pathway interactions 
within the cell can predict non-intuitive effects of het-
erologous expression on the host. These resource-aware 
models may offer advantages over the current phenom-
enological models used for consortium growth predic-
tions but have yet to be applied to contexts involving 
more than one host strain.

Weiße et  al. published a host-aware whole-cell model 
for E. coli which links transcription and translation to 
the allocation of cellular energy, ribosomes, and the pro-
teome [33]. This model has been widely used to predict 
burden for genetic circuits [34, 35]. Here, we adapt this 
model to predict the growth rates achievable by a simple 
consortium designed to perform complex-substrate deg-
radation. Many complex polysaccharide substrates found 
in plants, such as starch, cellulose, xylan or inulin, require 
two enzymes for efficient degradation: an endohydro-
lase to cleave bonds within the molecule into smaller 
chunks and an exohydrolase to release sugars from the 
end of polysaccharide chains. This simple pathway can 
be expressed with two genes in a single cell or in a two-
strain consortium where each strain expresses one of the 
genes. Here we use the example of starch hydrolysis to 
investigate a consortium of two strains of E. coli, express-
ing separately endoamylase and exoamylase. Cultured 
together, these strains should be able to grow on starch 
as the sole-carbon source. This model allows exploration 
of the impact of burden on this two-strain consortium 
and comparison with a monoculture co-expressing both 
hydrolytic enzymes simultaneously.

Results
A resource‑aware whole‑cell model for burden
Firstly, a whole-cell model for burden was adapted to pre-
dict cellular resource allocation and growth rate when 
expressing heterologous proteins in a DOL system. The 
ordinary differential equations (ODEs) describing this 
whole-cell model are derived from those published by 
Weiße et al. [33] (Fig. 2, Additional file 1: Table S1). The 
full details of the assumptions made and how the model 
equations are obtained can be found in Weiße et al. [33], 
but the key features of the model are:

1. The proteome is roughly divided into 4 categories, 
ribosomal proteins (r), transport proteins (et), meta-
bolic proteins (em) and housekeeping proteins (q) 
as described in Fig. 2a. Each of these 4 categories of 
proteins have ODEs for 3 species of intracellular mol-
ecules; the mRNA  (mx), the mRNA:ribosomal com-
plex  (cx) and the protein (x), where x ∈ {r, et, em, q}. 
It is assumed that all types of mRNA degrade at the 
same rate, and that the proteins are not degraded.

2. A further 2 ODEs model the imported substrate (si) 
and the energy molecules (a), equivalent to ATP. The 
primary substrate (s) is provided at a constant rate. 
Extracellular substrate is imported into the cell by 
transport proteins. The imported substrate is then 
converted into energy molecules by metabolic pro-
teins. The number of energy units produced from 
each substrate is dependent on the nutrient efficiency 
 (ns) (Fig. 2d).

3. The model assumes that translation accounts for 
the total energy use in the cell. To model transla-
tion, each free mRNA binds to a ribosome from the 
finite pool of free ribosomes, and each addition of 
an amino acid requires the use of one unit of energy 
(Fig. 2b).

4. At each time point, growth rate is calculated based 
on a set of linear growth laws described by Scott et al. 
[9] (Fig. 2c).

This model was adapted to a two-strain consortium; 
where one cell (Cell A) expresses enzyme A (ea) and 
the other (Cell B) expresses enzyme B (eb). For each cell 
type (A or B) an ODE model was created capturing the 
dynamics of the 14 intracellular molecules considered 
in Weiße’s framework, plus 3 new ODEs capturing the 
dynamics of the mRNA, the mRNA:ribosome complex 
and the protein for each heterologous gene. The equa-
tions for ribosomes and growth rate were adjusted to 
account for the new heterologous proteins as outlined 
in Nikolados et  al. [36]. To enable comparison with the 
monoculture case, a model was similarly built by add-
ing 6 ODES to the model of Weiße et al. to capture co-
expression of both enzymes A (ea) and B (eb) in a single 
cell. The same parameters employed by Weiße et  al. for 
an E. coli host cell were used [33].

An important consideration when adapting the model 
to the consortium was the necessity to provide substrate 
for both Cell A and Cell B. The rate of uptake of glucose 
from the environment into the cells, vuptake(et, s) , was 
adjusted to account for the number of each cell type in 
the consortia, (see Eq.  1), or in the monoculture (see 
Eq. 2). For the purpose of this model, we assume that the 
populations of both cell types in the consortium can be 
tightly controlled. This could be achieved by a number of 
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different methods; by computationally-controlled addi-
tion of each cell type in a turbidostat, or by further engi-
neering of the cells with autoinhibition or cross-feeding 
such that the populations will autoregulate themselves to 
remain at a stable ratio [37–40].

(1)vuptake(et, s) =
vet s(Na etcella + Nb etcellb)

s + Kmet

Here Na and Nb are the number of Cell A and Cell B 
respectively, and N  is the number of cells in the mono-
culture population. For the case study presented here we 
assume that the two cell types in the consortium remain 
stable in equal ratio and that the populations can be nor-
malised so the ratio of Cell A to Cell B is 1:1. For a fair 

(2)vuptake(et, s) =
vet s Net

s + Kmet

Fig. 2 Weiße’s whole‑cell modelling framework. a Expression of proteins is carried out in 3 steps; transcription, ribosome binding and translation. 
Free mRNA, ribosome‑bound mRNA and protein are denoted by mx, cx and x respectively, with x being r for ribosomal, q for housekeeping, em for 
metabolic or et for transport. The substrate, s, is supplied to the cell at a constant rate  (sin) controlled by a chemostat and imported into the cell by 
transport proteins. The imported substrate, si, is converted into energy units, a, by metabolic proteins. b A simplified translation model accounts 
for ribosome binding and unbinding to mRNA and then an irreversible elongation reaction. Energy units are consumed in translation elongation, 
with one energy unit consumed for each addition of an amino acid (aa). c Growth rate, λ, is calculated as a function of the rate of translation of all 
proteins in the cell and the total proteome content of the cell. All intracellular molecules will be lost at a dilution rate equal to the growth rate. d The 
finite energy pool available to the cell is determined by the balance between energy produced by metabolism of the substrate and consumption 
of energy required for protein translation. For a full description of these equations, see Weiße et al. [33] and Additional file 1: Table S1. Parameters 
(in red): x ∈ {r: ribosomal, et: transport, em: metabolic, q: housekeeping}; sin: rate of glucose input; vt:  kcat of transport reaction; KMt: Michaelis 
constant for transport reaction; vm:  kcat of metabolic reaction; KMm: Michaelis constant for metabolic reaction; ns: nutrient efficiency; ωx: maximum 
transcription rate of protein x; θx: “transcription threshold” for protein x; γmax: maximum translation rate; Kγ: “translation threshold”; kb: rate of 
ribosome binding; ku: rate of ribosome unbinding; nx: length of protein x in amino acids; M: all amino acids in the proteome
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comparison between the consortium and monoculture 
cases, we assume there is an equal total number of cells 
in both cases. Therefore, if the value of Na and Nb are 
each 1, an equivalent monoculture will have N  equal to 2. 
In this framework, et is the number of transport proteins 
per cell, which may vary across Cell A and Cell B, while 
vet is the  kcat of the transport reaction catalysed by all the 
transport proteins in the cell, and Kmet is the Michaelis 
constant for the same transport reaction.

The amount of glucose available to the cells, s , will 
depend on the glucose input, sin, the amount of glu-
cose consumed by the all the cells in the population, 
vuptake(et, s) , and the dilution rate, ds , of the chemostat, 
modelled using Eq. 3:

All parameter values used in the model are summarised 
in Additional file 1: Table S2.

DOL reduces resource redistribution to heterologous 
genes
The whole-cell model we briefly introduced above can be 
used to investigate burden when two heterologous pro-
teins are expressed using DOL and compare the simula-
tion results with those obtained from co-expressing all 
heterologous proteins in a single cell. Running a simu-
lation with glucose as the primary substrate shows that 
DOL in a two-strain consortium composed of Cells A 
and B achieves faster growth rates than the monoculture 
case (Fig. 3a and b). As the maximum transcription rate 
(ω) of the expressed heterologous proteins increases, the 
growth rate decreases. In the monoculture, growth rate is 
thus dependent on the transcription rate of both enzyme 
A and enzyme B (Fig.  3c), highlighting competition for 
resources between heterologous proteins and host pro-
cesses. In the consortia, however, the growth rate of each 
cell (Cell A or Cell B) depends on the transcription rate of 
the single heterologous protein it expresses.

The model predicts that DOL will improve the amount 
of heterologous protein that can be produced per cell. 
Cell A produces 20,130 molecules/cell of enzyme A 
(7.95% of total protein in Cell A; Additional file  1: 
Table S3), while Cell B produces 15,661 molecules/cell of 
enzyme B (6.34% of total protein in Cell B). In contrast 
a single cell in the monoculture produces 16,381 enzyme 
A and 13,394 enzyme B (11.94% of total protein). While 
the total number of proteins in the Weisse model may be 
underestimated [41, 42], the values for heterologous gene 
expression as a percentage of total protein lie within an 
acceptable range as E. coli has been shown to tolerate 
up to 30% of their proteome dedicated to heterologous 
expression [43].

(3)
ds

dt
= sin − vuptake(et, s)− dss

While in the consortia, each cell type, A or B, can pro-
duce more of its respective heterologous protein per cell 
than the monoculture, this may not result in higher het-
erologous protein yield overall. In a monoculture of 1000 
cells, all 1000 will express both proteins. In a consortium 
with 1000 cells, 500 will express protein A, and 500 will 
express protein B. Assuming that each cell in these popu-
lations produces the amount of protein predicted by the 
whole-cell model; a 1000-cell monoculture will produce 
around 16 million enzyme A and 13 million enzyme B. 
While a 1000-cell consortium will only produce around 
10 million enzyme A and 8 million enzyme B. There-
fore, while the monoculture case has slower growth and 
produces fewer heterologous proteins per cell, it may 
produce more heterologous proteins in total than the 
equivalent consortia case.

Starch‑degradation
Starch was identified as a desirable complex substrate for 
the application of division of labour. Starch is the second 
most abundant source of carbon in plants after cellulose 
and a common by-product of the food industry. Starch 
granules are made of two polymers of glucose, amylose 
and amylopectin, which differ in their structure and gly-
cosidic bonds. Efficient degradation of starch requires 
both endo- and exo- amylase activities to break down 
the two types of glycosidic bonds found in its structure. 
α-amylase (EC 3.2.1.1) is an endo-amylase which binds 
randomly in the sugar chain and catalyses hydrolysis of 
α-1,4 glycosidic bonds between glucose units, creat-
ing variable-length maltodextrins [44]. Glucoamylase 
(EC 3.2.1.3) is an exo-amylase which releases glucose 
from the non-reducing ends of a sugar chain by cleaving 
either α-1,4 or α-1,6 bonds [44]. These two enzymes are 
relatively well characterized for several different starch-
sources and maltodextrins.

Mathematically modelling the degradation of starch 
by amylase can be complex when the parallel activity of 
both amylases and the stochasticity of bond cleavage are 
taken into account [45, 46]. Therefore this model utilized 
a simplified set of equations proposed by Fujii and Kawa-
mura [47]. When starch is abundant, its degradation 
is modelled using a two-step process. The α-amylase-
dependent first reaction produces an intermediate which 
can act as a substrate for the glucoamylase-dependent 
second reaction. The reasoning for this schema is that 
at the beginning of starch hydrolysis there are relatively 
few non-reducing ends within the whole molecule that 
glucoamylase can act on, so the dominant reaction is the 
α-amylase hydrolysis reaction. Similarly, once a chain 
is degraded to a certain length, or limited by branches, 
α-amylase affinity for the substrate decreases. If a large 
proportion of starch is degraded to short chains, then the 
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α-amylase reaction becomes negligible and the glucoa-
mylase rate parameters will change based on the average 
chain length of the polysaccharide, as described in Fujii 
and Kawamura [47]. Both α-amylase and glucoamylase 

show Michaelis–Menten kinetics in terms of the rate 
of hydrolysis. Equations 4 and 5 below show the rate of 
change for starch, s0 , and the intermediate, s1 , respec-
tively. When starch is externally supplied as the primary 

Fig. 3 Simulation results for division of labour (DOL) compared to single‑cell co‑expression. Our proposed model accounts for the number of 
free ribosomes (free), and the number of ribosomes engaged in translation (cx) for the production of different types of protein (x, where x is ea, 
heterologous protein A; eb, heterologous protein B; q, housekeeping protein; em, metabolic enzyme; et, transport enzyme; r, ribosomal protein). 
Two heterologous proteins, ea and eb, can be expressed in a monoculture or consortium. Considering maximum transcription rates (ω) of 20 
mRNA/min for both proteins, we use this model to predict the steady‑state amount of ribosomes dedicated to the translation of these proteins 
and the associated cell growth rate that results from the reallocation of these ribosomes. a In monoculture at steady state 16.3% of ribosomes 
are diverted to heterologous expression with an associated doubling time of 44 min. b DOL in a two‑strain consortium means the resources of 
each cell are only diverted to the expression of a single protein. The overall reallocation of ribosomes to heterologous expression is thus reduced. 
However, the fraction of ribosomes allocated to the translation of each protein type is higher in the consortium case (ea: 9.2%, eb: 10.1% in the 
consortium case, compared to 7.5% and 8.8%, respectively in the monoculture case). The doubling time is faster compared to the monoculture 
case, while the number of heterologous proteins of each type produced per cell is higher. c In monoculture, the growth rate (λ) is dependent 
on the maximum transcription rates (ω) of both heterologous proteins. In the consortium, the growth rate is dependent on only one of the two 
transcription rates. ea & eb: two generic heterologous proteins, cx: ribosome:mRNA complexes for protein x (x ∈ {ea, eb, q, em, et, r}), λ: growth rate, 
ωea: maximum transcription rate of ea, ωeb: maximum transcription rate of eb
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substrate, glucose, s , will vary based on Eq. 6, replacing 
the previously stated Eq. 3 which is only applicable when 
glucose is supplied as the primary substrate.

Here ea represents the concentration of α-amylase, 
while eb denotes that of glucoamylase, vea and veb rep-
resent the  kcat rates for ea and eb , respectively, and Kmea 
and Kmeb

 are the Michaelis constant for each enzyme. The 
rate of each step is also dependent on the number of cells 
expressing α-amylase (i.e. the population of Cell A ( Na )) 
and the number of cells expressing glucoamylase (i.e. the 
population of cell B ( Nb)). For a monoculture system all 
cells will express both, therefore Na and Nb in Eqs. 4, 5 
and 6 will be replaced with N  (Additional file 1: Table S4). 
In this example, we assume that each population type can 
be tightly controlled and that the proportion of Cell A to 
Cell B can be robustly maintained at a 1:1 ratio. Under 
this assumption, without loss of generality, we consider 
Na = 1, Nb = 1 and N  = 2, so that the monoculture and 

(4)
ds0

dt
= s0in − Na

vea ea s0

s0+ Kmea

− ds0s0

(5)
ds1

dt
= Na

vea ea s0

s0+ Kmea

− Nb

veb eb s1

s1+ Kmeb

− ds1s1

(6)
ds

dt
= Nb

veb eb s1

s1+ Kmeb

− vuptake(et, s)− dss

consortium have equal total number of cells. The rate of 
starch input, s0in , and the rate of loss of each substrate, 
ds0 , ds1 and ds , can be adjusted for the desired bioreactor 
setup. These equations were combined with the ODEs for 
Cell A and Cell B as shown in Fig. 4.

DOL can achieve higher growth rate on starch 
than an equivalent monoculture system
To investigate the relationship between amylase expres-
sion, starch degradation and burden when starch is 
used as the primary carbon source, we use the model in 
Eqs. 1–5 to numerically simulate growth rate for a range 
of expression levels of amylases.

Figure  5a shows the growth rate for a monoculture 
single cell as a function of the maximum transcription 
rate (ω) of α-amylase (ea) and glucoamylase (eb). Simi-
larly, Fig.  5b shows the average growth rate of the cells 
in the consortium, where one cell (Cell A) expresses only 
α-amylase, and the other (Cell B) expresses only glu-
coamylase. The maximum growth rate achieved by the 
monoculture was 0.01784   min−1, or a doubling time of 
38.85  min, which was achieved at ωea = 15 and ωeb = 12 
mRNA  min−1. Different ratios of the two cell types in 
the consortium were tested. Approximately equal ratios 
showed the best average growth rate for the consor-
tium (Additional file 1: Fig. S1). For a 1:1 ratio of the cell 
types the maximum average growth rate achieved by the 
consortium was 0.01793   min−1, or a doubling time of 

Fig. 4 Model for starch utilisation with division of labour in a two‑strain consortium. Each cell is modelled using the Weiβe modelling framework 
adapted to account for the additional expression of either α‑amylase (ea) or glucoamylase (eb). These amylases each catalyse a step in the 
degradation of starch. The first step is an α‑amylase‑dependent reaction, which degrades starch (s0) and produces maltodextrin intermediates of 
various lengths (s1). These intermediates are then degraded to glucose (s) via a glucoamylase‑dependent reaction. Glucose is imported into each 
cell and the intracellular molecules of the two cells are modelled with the whole‑cell model based on Weiβe et al. [33] (Fig. 2)
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38.66  min, which was achieved at ωea = 29 and ωeb = 24 
mRNA  min−1. At this maximum, Cell A is growing at 
0.01779  min−1 (doubling time 38.96 min), while Cell B is 
growing at 0.01807  min−1 (doubling time 38.36 min).

Considering the cell types in the consortium separately, 
the fastest growth rate achieved for Cell A in the con-
sortium was 0.01915   min−1 (doubling time 36.20  min), 
at ωea = 22 mRNA/min and ωeb = 99 mRNA/min (Cell B 

at these values has a growth rate of 0.01004   min−1 or a 
doubling time of 69.04 min). The fastest growth rate for 
Cell B was 0.01924   min−1 (doubling time 36.03 min), at 
ωea = 99 mRNA/min and ωeb = 19 mRNA/min (Cell A at 
these values has a growth rate of 0.01098  min−1 or a dou-
bling time of 63.13 min). This shows that the growth of 
each cell type in the consortium is maximal when its con-
sortium partner’s transcription rate is high.

Fig. 5 Changes in the steady state growth rate with varying transcription rates for α‑amylase (ea) and glucoamylase (eb), in monoculture and 
division of labour (DOL) systems of expression. Changes in growth rate (λ,  min−1) for an average cell in a monoculture or a two‑strain consortium, 
as the maximum transcription rates of α‑amylase and glucoamylase (ωea and ωeb respectively) are varied. To obtain biologically realistic values for 
each parameter combination, a numerical simulation with glucose as the main carbon  source was first run until steady‑state values were reached. 
Using these steady‑state values as initial conditions, we then performed a second run with starch as the main carbon source. a Steady‑state growth 
rate of an average cell co‑expressing α‑amylase and glucoamylase. b Steady‑state growth rate of an average cell in the consortium. Cell A expresses 
α‑amylase, while Cell B expresses glucoamylase. The consortium growth rate is calculated as the average growth rate of the two cells. c Comparison 
of monoculture and consortium growth rate (difference measured as the average growth rate of the consortium minus the monoculture growth 
rate)
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Figure  5c shows the difference between the average 
consortium growth rate and the monoculture growth 
rate. At lower transcription rates the monoculture has 
a faster growth rate than the consortium (red region in 
Fig.  5c). We assume a minimal population of 2 cells in 
both the monoculture and the consortium. In the mono-
culture, we assume each of the 2 cells produces both the 
heterologous proteins in the amount predicted by the 
monoculture whole-cell model. In the consortium, how-
ever, assuming a 1:1 ratio of the two cell types, each cell 
only produces one of the heterologous proteins. Based 
on the whole-cell model predictions a 2-cell monoculture 
will produce a higher number of amylases in total than a 
2-cell consortium (Additional file 1: Fig. S2). Interrogat-
ing the different regions in Fig. 5c reveals that the param-
eter values of the red region, at which the monoculture 
grows better than the consortium, correspond to the 
parameter values at which the monoculture is consum-
ing all the glucose provided by the amylases (Additional 
file 1: Fig. S3). This indicates that when glucose produc-
tion is the limiting factor for growth (rather than heterol-
ogous gene expression burden) the monoculture system 
has the advantage over the DOL system.

At higher transcription rates, the consortium outper-
forms the monoculture (blue region in Fig. 5c). At these 
parameter values the monoculture is more affected by 
burden than the consortium since it co-expresses two 
heterologous proteins which divert resources away 
from essential endogenous genes. At the higher tran-
scription levels, this allows the consortium to achieve 
a higher maximum growth rate than the monoculture. 
Burden must be sufficiently limiting to growth, which 
will occur at the higher transcription levels, for DOL to 
be an appropriate strategy to improve growth on starch. 
Changing the ratio of the two cell types will shift the 
threshold at which the consortium outperforms the mon-
oculture (Additional file 1: Fig. S4).

Discussion
Whole-cell models for predicting burden have been 
underutilised in the design of DOL in consortia. 
Here, we have demonstrated that these models can be 
adapted to observe and predict the difference in growth 
when expressing heterologous genes by DOL versus in 
a single cell. A consortium of two cells each expressing 
a single heterologous protein achieves a higher growth 
rate than a monoculture co-expressing two heterolo-
gous proteins; this benefit of DOL is a phenomenon 
often observed in natural microbiomes. By explicitly 
modelling the resource allocations of translation this 
model reflects the biological mechanism behind this 
observation; the redirection of ribosomes toward heter-
ologous gene expression is greater in the monoculture 

cell than in either of the consortium cells. It is impor-
tant to note that, in the monoculture, the growth rate 
and production of both enzymes is dependent on both 
genes’ expression level, which reflects a design chal-
lenge when trying to optimise either of the two genes 
in a one-factor-at-a-time approach. In the DOL case, 
when grown on glucose, each cell is only dependent on 
the transcription rate of its respective protein, mean-
ing both cells could be optimised independently and 
in parallel. Because of the reduced burden, either cell 
of the consortium, Cell A or Cell B, produces more per 
cell of their respective enzyme A or B than the amount 
produced per cell in the monoculture. However, at a 
population level, when the monoculture and the con-
sortium both have the same total number of cells, the 
monoculture will produce a higher total amount of het-
erologous proteins than the consortium. Therefore, it is 
important to consider the end-point application of such 
DOL. If the aim is to produce the maximum of enzyme 
A or enzyme B then the monoculture may be prefer-
able, whereas if the aim is to provide optimal growth 
rates, perhaps for production of an endogenous mol-
ecule of interest, then DOL may be preferable.

Here, the application of interest is in dividing the 
labour of complex-substrate degradation, with starch 
used as a specific example. Whether or not DOL is suit-
able to improve growth of engineered E. coli on starch 
depends on the balance between useful expression of 
the amylases to produce glucose, and non-productive 
expression which creates unnecessary burden. The model 
identifies the parameter space within which the mono-
culture or the DOL system is preferable. Where starch 
degradation to glucose is the limiting factor to growth, a 
monoculture system would be preferable. A 2-cell mono-
culture performs better than a 2-cell consortium at low 
transcription rates because total amylase production 
is higher when 2 cells are co-expressing both amylases, 
compared to a duoculture consortium in which each cell 
is expressing a single type of amylase. However, there is a 
threshold beyond which amylase expression is no longer 
beneficial to growth and instead becomes detrimental. 
Monoculture cells reach this threshold at a lower tran-
scription rate than the consortium cells. For all transcrip-
tion rates above this threshold the consortium achieves 
a higher growth rate than the monoculture. Therefore, 
where burden is the limiting factor to growth, a DOL 
system is preferable. The consortium could also achieve 
a higher maximum growth rate than the monoculture if 
the parameters are optimised precisely. By identifying 
the parameter space within which DOL can provide ben-
efits, this model will inform design choices for complex-
substrate degradation and aid in attaining the optimum 
expression level for maximal growth.
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When grown on glucose as the primary carbon source, 
the difference in growth achieved by the consortia com-
pared to the monoculture is much more distinct, because 
the expressed heterologous protein is disconnected 
from the substrate production. Currently the only out-
put is growth on starch, however for a full consolidated 
bioprocess, the cells should also biosynthesise desirable 
products. Heterologous biosynthesis genes will not have 
the positive connection to growth seen by amylases. 
Therefore, DOL may be more beneficial to a bioproduc-
tion pathway than to a substrate degradation pathway.

One important limitation of this model is that it 
assumes a stable ratio of cell types in the consortium 
and therefore does not consider the effect of asymmet-
ric growth rates on population dynamics. In the mono-
culture the primary substrate is shared equally, as all cells 
grow at the same rate. But, in consortia, if one cell type 
has a faster growth rate it may consume more substrate 
than its consortium partner. The current version of the 
two-strain consortium model indicates that if one protein 
transcription is set very high and the other very low there 
may be a significant difference in growth rate between the 
two cell types. The lower-expressing cell will have a sur-
vival advantage and could dominate a co-culture. How-
ever, this model assumes that populations can be robustly 
controlled at a stable fixed ratio and therefore does not 
give any perspective on the population dynamics. Sim-
plified host-aware coarse-grained models or agent-based 
model approaches may be preferable for achieving both 
cellular-level and population-level dynamics.

Another limitation of the model in its current state is 
the lack of experimental validation for the quantitative 
results. This model demonstrates the reduced meta-
bolic burden that is seen when DOL is implemented. 
This advantage of microbial consortia is supported by 
experimental data for DOL in biosynthesis pathways, 
allowing higher productivity or production of molecules 
that is impossible to achieve by single cells [16, 17, 48]. 
Further, there are many experimental studies that sup-
port the benefits of using consortia for degradation of 
lignocellulosic biomass [21, 49–51], including combin-
ing α-amylase-expressing species with glucoamylase-
expressing species [52]. However, experimental studies 
which directly compare a consortium expressing differ-
ent degradation enzymes with an equivalent co-express-
ing monoculture are currently an underexplored area of 
investigation. So, while this study provides a theoreti-
cal prediction for how such a consortium would behave 
compared to monoculture, these predictions remain to 
be verified experimentally.

Currently, our proposed approach only considers gene 
expression burden caused by the energetic cost and real-
location of translational resources. However, burden can 

encompass other costs incurred by a host cell due to 
the expected or unexpected functions of the synthetic 
pathway [53]. When introduced to a new proteome and 
metabolome, heterologous proteins may be promiscu-
ous [54]. This can cause toxicity burden, and includes 
the production of unexpected toxic byproducts, induc-
tion of unfolded-protein stress response, or obstruction 
of endogenous protein function [11]. On the other hand, 
the heterologous protein may function as desired but 
inadvertently produce role-based burden, such as deplet-
ing the intracellular resources for native metabolic path-
ways [53]. Therefore, some pathways that could benefit 
from DOL due to these other burdens will not accurately 
be predicted by our proposed model.

Conclusions
In conclusion, we have proposed a resource-aware 
whole-cell model that highlights the interesting rela-
tionships that exist between DOL and burden for a sys-
tem where primary substrate catabolism is dependent 
on heterologous protein production. A two-strain E. coli 
consortium expressing α-amylase and glucoamylase sin-
gularly in different cell types can achieve a higher growth 
rate on starch than a monoculture co-expressing both 
genes. However, this is only achievable within a particu-
lar region of expression, identified by the model, where 
amylase production is not limiting the glucose supplies 
to the cell. This model may be reparametrized to other 
host organisms where translation plays the primary role 
in heterologous expression burden. Further, adapting 
this, or similar, resource-aware coarse-grained models 
may be useful in the future for other DOL applications, 
such as distributed biosynthesis pathways or multicellu-
lar genetic circuits, in predicting burden and informing 
design choices.

Methods
Hardware and software
Data was generated on a Windows 10 PC with Intel® 
Core™ i7-1065G7 CPU @ 1.30 GHz, 16 GB RAM using 
Python 3.7 with a Spyder 4.1 (as part of Anaconda) IDE. 
Where multiple processors were available, the compu-
tational labour was divided between processors using 
the dask.distributed package (distributed.dask.org) for 
Python.

ODE solver and simulation methods
The scipy.integrate.solve_ivp function from the scipy 
package was used to solve ODEs, with the LSODA 
method (Adams/BDF method with automatic stiffness 
detection and switching). In all simulations the time span 
was set to 0–20,000 min, and the absolute tolerance (atol) 
and relative tolerance (rtol) were set to  1e−12. Steady state 
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was taken as the value for each intracellular molecule at 
the end of a numerical simulation of 20,000 min.

For simulations where glucose is supplied externally the 
ODEs were initialised with 1000 energy units (a) and 10 
ribosomes (r), as in the original Weiße model. For simu-
lations on starch, a simulation was first run for growth on 
glucose, then the steady-state values reached were used 
as initial conditions for a simulation on starch.
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