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Multi-pathogen infections and Alzheimer’s 
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Abstract 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumula-
tion of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the 
amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-mod-
ifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent dis-
covery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD 
and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood–
brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause 
chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various 
pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area 
has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. 
The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the 
potential coexistence of multiple pathogens and biofilms in AD’s aetiology may stimulate the development of novel 
approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major 
pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
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Introduction
Alzheimer’s disease (AD) is a progressive brain disor-
der that destroys memory and thinking skills, ultimately 
causing an inability to perform even simple tasks. AD 
causality is multifactorial. The main risk factors include 
age [1], genetic predisposition [2], cardiovascular dis-
ease [3], traumatic brain injury [4], and different envi-
ronmental factors [5]. The disease is associated with 
the overproduction and accumulation of amyloid-β 
peptide and hyperphosphorylation of tau protein in the 
brain. Although amyloid-β peptide is well known for its 

neurotoxic potential in AD, there is enough evidence 
supporting its beneficial roles in protecting the body 
from infections [6], repairing leaks in the blood–brain 
barrier [7], promoting recovery from brain injury [8, 9], 
and regulating synaptic function [10, 11]. In particular, 
the recent discovery that the amyloid-β peptide has anti-
microbial activities strongly supports the possibility of an 
infectious aetiology of AD and suggests that amyloid-β 
plaque formation might be induced by infection. The 
idea that infection may underpin the aetiology of AD was 
first raised in 1907 [12], and many scientists have since 
investigated the links between various pathogens and the 
development of the disease (Fig. 1). Most research in this 
area has focused on individual pathogens; studies of this 
type were recently reviewed by Sochocka [13]. However, 

Open Access

Microbial Cell Factories

*Correspondence:  jiri@chemi.muni.cz
†Dana Vigasova and Michal Nemergut shared first authors
1 International Clinical Research Center, St. Anne’s University Hospital 
Brno, Pekarska 53, 656 91 Brno, Czech Republic
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7848-8216
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-021-01520-7&domain=pdf


Page 2 of 13Vigasova et al. Microb Cell Fact           (2021) 20:25 

a  growing body of evidence supports the hypothesis of 
polymicrobial causality [14–20].

The multi-microbial or poly-microbial hypothesis has 
been discussed in terms of the infectious burden and 
assumes that the collective, cumulative activity of multi-
ple pathogens contributes to the development of disease 
[21]. Here we summarize this interesting topic, with a 
particular focus on the roles of herpetic viruses, bacte-
rial and fungal pathogens, and representative parasites 
(Fig. 2). Other pathogens are also mentioned when appro-
priate. Articles on cognitive decline and impairment in 
the context of infectious burden are discussed. The arti-
cles for this review were obtained by PubMed searches 
using the search strategy explicitly described in the Addi-
tional file  1. Selected studies identifying single-taxon 

(Table  1) and multi-taxon (Table  2) pathogens in sam-
ples from subjects with AD are systematized. Addition-
ally, potential antimicrobial therapeutic strategies such 
as treatment with antiviral, antibacterial, antifungal, 
antiparasitic and anti-biofilm agents are suggested.

Single‑taxon infections
Herpetic viruses
Herpesviridae is a  family of double-stranded DNA 
viruses, eight of which are known to infect humans and 
cause neurological disease: (i) herpes simplex virus 1 
(HSV-1), (ii) herpes simplex virus 2 (HSV-2), (iii) vari-
cella zoster virus (VZV), (iv) human cytomegalovirus 
(CMV), (v) Epstein-Barr virus (EBV), (vi) human herpes-
virus 6 (HHV-6), (vii) human herpesvirus 7 (HHV-7), and 
(viii) human herpesvirus 8 (HHV-8). A  notable aspect 
of their behaviour is that following infection, they can 
enter a latent phase and potentially become reactivated 
in the event of immunity impairment [22]. Several stud-
ies have provided evidence of associations between vari-
ous herpetic viruses, a decline in cognitive abilities, and 
AD. The most studied viruses in this context are HSV-1 
and CMV (Table 1). Positive associations between these 
two viruses were observed in several serological studies 
[23–25]. Additionally, Watson et al. described an associa-
tion between cognitive decline and cumulative exposure 
to CMV, HSV-1, and HSV-2 [26]. Similarly, using a new 
method for viral DNA amplification from formalin-fixed 
AD brain tissue, Rodriguez et al. demonstrated the pres-
ence of HSV-1 and CMV but not HSV-2 in a limited set 
of samples [27].

Significant associations have also been observed 
between HHV-6 and HSV-1 [28], HHV-6 and EBV [29], 
and HHV-6 and HHV-7 [30]. A PCR-based analysis of 
AD-infected and control brain samples performed by 
Lin et al. showed that the proportion of AD samples con-
taining HHV-6 DNA sequences was higher than in con-
trols (70% versus 40%, p = 0.003) and that the presence 
of HHV-6 overlapped strongly with that of HSV-1 in AD 
samples [28]. In another multiscale statistical analysis of 
three independent AD cohorts, Readhead et  al. demon-
strated increased levels of HHV-6A and HHV-7 tran-
scripts in brains of AD patients, as well as increased levels 
of HSV-1, encoded latency-associated transcripts [30]. 
Carbone et al. analyzed HHV-6, CMV, and EBV DNA in 
peripheral blood leukocytes and brain samples together 
with IgG levels in plasma samples from AD patients and 
healthy controls [29], revealing increased levels of EBV 
and HHV-6 DNA in peripheral blood leukocytes as well 
as increased CMV and EBV IgG levels in patients who 
developed AD in the following 5  years. However, sev-
eral other studies found either no evidence of herpetic 

Fig. 1 The infection hypothesis of Alzheimer’s disease (AD). 
Ageing processes leading to increased risks of AD are shown in 
green. Pathogenic viruses, bacteria, fungi, and parasites potentially 
associated with AD are shown in grey. Molecular components of 
pathogenic agents, e.g., DNA, RNA, capsid proteins, proteolytic 
enzymes, peptidoglycans, and lipopolysaccharides potentially 
present in biological samples of AD subjects are shown in blue. Two 
known hallmarks of the disease—Aβ fibrils and Tau tangles—are 
depicted using red and blue cartoons. Brain tissue, both healthy and 
degenerated, is represented by yellow cartoons
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infection in AD samples or no significant association 
between more than one of these viruses and AD [31–36].

Bacteria
One of the first pieces of evidence suggesting the involve-
ment of bacteria in the development of neurological dis-
orders was the discovery of Treponema pallidum in the 
paretic brains of syphilitic patients [37]. Over 70  years 
later, MacDonald and Miranda reported the presence of 
another bacterium, Borrelia burgdorferi, in the brains of 
AD patients [38], and Miklossy et al. noted obvious simi-
larities between the clinical and pathological signs of AD 
and syphilis [39]. Both T. pallidium and B. burgdorferi 
bacteria belong to the phylum Spirochaetes, which, like 

the herpetic viruses, has neurotrophic effects and can 
enter a latent state after initial infection [40].

In addition to spirochetes, the roles of various oral 
Treponema species and other periodontal bacteria in 
the aetiology of AD have been investigated (Table  1). 
The presence of several Treponema species was detected 
in different brain regions of AD patients, and multiple 
species were identified in several cases [41]. The pos-
sibility that co-infection by multiple spirochetes might 
contribute to the development of AD was subsequently 
raised by Miklossy [39]. Serological studies performed 
by Kamer et  al. further supported the hypothesis that 
periodontal bacteria might contribute to AD because an 
AD group exhibited elevated levels of antibodies against 
Aggregatibacter actinomycetemcomitans, Porphyromonas 

Fig. 2 Associations between infectious burden and AD covered by this review. Single-taxon infections are listed in the left column, while 
combinations of pathogenic taxa that may occur in multi-taxon infections are listed in the right. The infectious burden hypothesis assumes that 
the combined activity of multiple pathogens contributes to the development of the disease. Most studies on infection and AD have used a limited 
set of diagnostic tests and could, therefore only examine the contributions of individual taxa. This review highlights the need to use multi-species 
diagnostic tests in such studies
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gingivalis, and Tannerella forsythia [42]. Additionally, 
Beydoun et al. showed that co-infection with Helicobac-
ter pylori and periodontal pathogens may alter the onset 
of AD [43]. Another well-designed serological study 
monitored levels of antibodies against 7 periodontal bac-
teria and reported significantly increased antibody levels 
(α = 0.05) against Fusobacterium nucleatum and Prevo-
tella intermedia in AD patients [44]. 16S rRNA sequenc-
ing analysis of a limited number of AD and control brain 
samples (frozen and fixed in formaldehyde) revealed 
a  5–10-fold increase in bacterial reads in AD samples 
compared to healthy controls [45]. A more recent study 
also confirmed the presence of bacterial species associ-
ated with gingivitis and periodontal disease in AD brain 
samples [46].

Fungi
Early studies identified antibodies against various yeast 
cells, fungal proteins, and (1,3)-β-glucans in AD patients’ 
blood serum [47]. Eleven AD patients from a  group of 
29 exhibited high immunoreactivity against a  major-
ity of tested Candida species, and a further two patients 
exhibited high reactivity towards a  single Candida spe-
cies (Table 1). Moreover, very high levels of fungal anti-
gens were detected in 6 of 29 patients with AD, 8 patients 
exhibited high levels, and 8 patients exhibited high levels 
of antigens originating from at least one Candida spp. 
and moderate levels of antigens from at least one other 
species. Strikingly, Fungitell tests indicated that fun-
gal polysaccharides were present in the blood serum of 
28 of the 29 AD patients, suggesting that almost all of 
the patients had a disseminated fungal infection [47]. 

Table 1 Studies identifying single‑taxon pathogens in samples from subjects with AD

PBL peripheral blood leukocytes, CSF cerebrospinal fluid, NGS next-generation sequencing

Authors, Years Pathogens Matrix Sample size Methodology References

Herpetic viruses
Lövheim et al., 2018 HSV-1, CMV Plasma 360 ELISA [23]

Lin et al., 2002 HSV-2, CMV, HHV-6 Brain 148 PCR-based analysis [28]

Carbone et al., 2014 CMV, EBV, HHV-6 Brain
Plasma
PBL

93 PCR-based analysis, ELISA [29]

Redhead et al., 2018 HHV-6, HHV-7 Brain Cohort study RNA sequencing, statistical analysis [30]

Hemling et al., 2003 HSV-1, HHV-6, VZV Brain 34 PCR-based analysis [31]

Bacteria
Riviere et al., 2002 Treponema species Brain 19 PCR-based analysis, immunochemical 

analysis
[41]

Kamer et al., 2009 Periodontal bacteria Plasma 18 ELISA [42]

Beydoun et al., 2020 Helicobacter pylori, periodontal bacteria Serum 1431 Immunochemical analysis, statistical 
analysis

[43]

Sparks Stein et al., 2012 Periodontal bacteria Serum 81 ELISA [44]

Emery et al., 2017 Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria

Brain 14 16S rRNA sequencing [45]

Siddiqui et al., 2019 Gingivitis bacteria
Periodontal bacteria

Brain 10 16S rDNA sequencing [46]

Fungi
Alonso et al., 2014 Saccharomyces cerevisiae, Malassezia 

globosa, Malassezia restricta, Penicillinum, 
Phoma

Serum 29 Immunofluorescence analysis, slot-blot 
analysis

[47]

Alonso et al., 2014 Candida sp., Saccharomyces cerevisae, 
Rhodotorula mucilaginosa

Brain 11 Proteomic analysis
PCR-based analysis

[48]

Alonso et al., 2015 Candida albicans, Cladosporium cryptococ-
cus, Malasezzia globosa

Malasezzia restricta, Saccharomyces 
cerevisiae

CSF 10 PCR-based analysis, slot-blot analysis [49]

Pisa et al., 2015 Candida sp., Cladosporium, Phoma, 
Malassezia globosa, Malassezia restricta, 
Neosartorya hiratsukae, Saccharomyces 
cerevisiae, Sclerotina borealis

Brain 11 PCR-based analysis, immunochemical 
analysis

[50]

Alonso et al., 2017 Candida albicans, Cladosporium cryptococ-
cus, Malasezzia globosa

Saccharomyces cerevisiae

Brain 9 PCR-based analysis, NGS [51]
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Follow-up proteomic analyses showed that 4 fungal 
peptides were present in 3 AD brain samples but not 
in a  control sample [48]. Extraction and sequencing of 
DNA from 8 AD patients revealed 5 fungal species: Sac-
charomyces cerevisiae, Malassezia globosa, Malassezia 
restricta, Penicillium and Phoma. Multiple species were 
detected in several individual patients [48]. Slot-blot 
analysis of cerebrospinal fluid was used to detect antigens 
in 10 AD samples and 3 controls; fungal antigens were 
detected in the AD cerebrospinal fluid with high statisti-
cal confidence (p = 0.0016, odds ratio = 8) [49]. Moreover, 
DNA analysis and sequencing of 6 AD samples revealed 
the presence of 6 fungal species: Candida albicans, Clad-
osporium, Cryptococcus, Malasezzia globosa, Malasezzia 
restricta and Saccharomyces cerevisiae. Interestingly, 4 of 
the 6 samples contained multiple fungal species, indicat-
ing multi-fungal infection [49].

Pisa et  al. investigated the presence of various yeast 
species in four different brain regions [50]. Immunohis-
tochemical analysis confirmed fungal infection in differ-
ent brain sections. DNA amplification and sequencing of 
one AD and one control sample revealed the following 
species: Candida albicans, Candida ortholopsis, Candida 
tropicalis, Cladosporium, Malassezia globosa, Malasse-
zia restricta, Neosartorya hiratsukae, Phoma, Saccha-
romyces cerevisiae and Sclerotinia borealis (Table  1). 
Some of these species were detected in the same brain 
region repeatedly, in keeping with previous reports of 
multi-fungal infections in AD patients [50]. Next-gen-
eration sequencing was subsequently used to analyze 
fungal DNA in samples representing four brain regions 
from a single AD patient [51], revealing the presence of 
an impressive array of yeast species. Notably, Crypto-
coccus curvatus and Botrytis cinerea were detected in 

Table 2 Studies describing multi‑taxon pathogens and their effect on cognitive impairment

NC not confirmed, AD samples from patients with confirmed AD

Authors, Years Pathogens Matrix Sample size Methodology References

Viruses and bacteria
 Bu et al., 2014 HSV-1, CMV, Borrelia burgdorferi, Chlamydia 

pneumoniae, Helicobacter pylori
Serum 128

AD
ELISA [15]

 Strandberg et al., 2003 HSV-1, HSV-2, CMV, Chlamydia pneumo-
niae, Mycoplasma pneumoniae

Serum 383 ELISA [52]

 Strandberg et al., 2005 HSV-1, HSV-2, CMV, Chlamydia pneu-
moniae, Mycoplasma pneumoniae, 
Helicobacter pylori

Serum 58 ELISA,
PCR-based analysis

[53]

 Katan et al., 2013 HSV-1, HSV-2, CMV, Chlamydia pneumo-
niae, Helicobacter pylori

Serum 1625 ELISA [54]

 Wright et al., 2015 HSV-1, HSV-2, CMV, Chlamydia pneumo-
niae, Helicobacter pylori

Serum 588 ELISA [55]

 Renvoize et al., 1987 HSV-1, CMV, Adenovirus, Influenza A and 
B, Measles

Chlamydia Group B, Coxiella burnettii, 
Mycoplasma pneumoniae

Serum 33
AD

Immunochemical analysis [56]

Viruses and parasites
 Gale et al., 2016 CMV, HSV-1, HSV-2

Toxocaris, Toxoplasmosis, Hepatitis A, B, C
Serum 5662 Immunochemical analysis [66]

 Nimgaonkar et al., 2016 HSV-1, HSV-2, CMV, Toxoplasma gondii Serum 1022 Immunochemical analysis [67]

Viruses and fungi
 Kuboshima et al., 2007 CMV, Aspergilloma Lungs 1

AD
Autopsy [68]

Bacteria and parasites
 Gale et al., 2015 Helicobacter pylori, Toxoplasma gondii Serum 1785 Immunochemical analysis [69]

Bacteria and fungi
 Alonso et al., 2018 Several bacterial and fungal species Brain 10

AD
Immunochemical analysis, PCR-based 

analysis, NGS
[14]

Bacteria, viruses, and fungi
 Pisa et al., 2018 NC Brain 2

AD
Immunochemical analysis, PCR-based 

analysis, Proteomic analysis
[19]

Bacteria, viruses, fungi, and parasites
 Pisa et al., 2017 NC Brain 10

AD
Immunochemical analysis, PCR-based 

analysis
[20]
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every studied region. Analysis of two brain regions from 
a healthy control sample also revealed the presence of 
diverse fungal species. However, the species identified in 
control differed from those in the AD samples [51].

Multi‑taxon infections
Viruses and bacteria
The effect of the cumulative viral and bacterial burden on 
cognition was systematically investigated by Strandberg 
et  al., who tested seropositivity towards HSV-1, HSV-2, 
CMV, Chlamydia pneumoniae, and Mycoplasma pneu-
moniae in an elderly Finnish population (Table  2). The 
results of this comprehensive study indicated that viral 
burden was associated with cognitive impairment, but 
no association with bacterial burden was observed [52]. 
A follow-up study investigated the presence of Helicobac-
ter pylori in addition to the pathogens listed above: sero-
positivity towards 3 herpetic viruses and 3 bacteria along 
with APOE ε4 and several other factors was tested in a 
cohort of 357 elderly Finnish residents. An association 
between herpetic viruses and cognitive impairment was 
again observed. Besides, the presence of APOE ε4 and 
low education were shown to significantly affect cogni-
tive impairment [53].

Katan and colleagues measured levels of antibodies 
against HSV-1, HSV-2, CMV, Chlamydia pneumoniae, 
and Helicobacter pylori in a population of 1625 elderly 
participants, and observed a positive correlation between 
infectious burden and cognitive impairment [54]. A 
similar association was observed even when only the 
viral infectious burden was considered. Another system-
atic and well-executed study supporting an association 
between infectious burden and cognitive functions was 
published by Wright et  al., who demonstrated a  strong 
association between infection with five pathogens (HSV-
1, HSV-2, CMV, Chlamydia pneumoniae, and Helicobac-
ter pylori) and cognitive decline in the memory domain 
by testing samples from 588 stroke-free participants [55]. 
Bu et al. tested titers of antibodies against HSV-1, CMV, 
Chlamydia pneumoniae, Helicobacter pylori, and Bor-
relia burgdorferi in a cohort of 128 AD patients and 135 
controls and showed that the total burden of infection 
with these species was associated with AD [15]. However, 
Renvoize et al. investigated serum antibody titers against 
9 pathogens and found no significant differences between 
33 AD patients and 28 healthy controls [56].

Viruses and parasites
Infection with the parasitic intracellular protozoan Tox-
oplasma gondii and parasitic Toxocara spp. have been 
reported to be accompanied by viral hepatitis infections 
(Table  2). T. gondii is the main cause of toxoplasmosis 
and is highly prevalent worldwide [57]. Like herpetic 

viruses and spirochetes, Toxoplasma exhibits strong 
CNS tropism, is preferentially localized within specific 
brain regions, and has been linked to various neuropsy-
chiatric disorders [58, 59]. Several murine studies have 
revealed associations between Toxoplasma infection and 
AD [60, 61], but the results of human studies have been 
rather inconsistent. One study showed that AD patients 
exhibited higher levels of antibodies against T. gondii 
than healthy controls [62]. The helminths Toxocara canis, 
Toxocara cati and Taenia solium are another group of 
parasites whose role in dementia has been investigated. 
Infection with Toxocara species is a  common zoono-
sis, and is reported to have diverse neurological con-
sequences, including dementia [63, 64]. Infection with 
Taenia solium is also known as cysticercosis; the form 
affecting the human nervous system is called neurocyst-
icercosis, which causes a range of neuropsychiatric symp-
toms linked to dementia [65].

Two excellent serological studies have investigated the 
relationship between viruses, parasites, and cognitive 
function. The first examined the association between 
eight pathogens (HSV-1, HSV-2, CMV, HAV, HBV, HCV, 
Toxocariasis, and Toxoplasmosis) and cognitive decline 
in a cohort of 5662 young to middle-aged participants. 
HSV-1, CMV, and HAV were found to be strongly asso-
ciated with cognitive decline. HSV-2, Toxoplasmosis, 
Toxocariasis and HBV were also associated with decline, 
albeit less strongly than the first group. Surprisingly, 
HCV appeared to be the pathogen with the weakest asso-
ciation [66]. The second study measured levels of anti-
bodies against HSV-1, HSV-2, CMV, and Toxoplasma 
gondii in a cohort of 1022 participants whose cognitive 
status was monitored over a 5  year follow up period. 
Interestingly, HSV-2, CMV, and Toxoplasma gondii were 
associated with accelerated cognitive decline, but HSV-1 
was not [67].

Viruses and fungi
Kuboshima et  al. reported the admission of a patient 
with health complications, including AD and depression 
(Table  2). Despite care and treatment, the patient died 
on the 26th day of hospitalization. An autopsy revealed 
a pulmonary aspergilloma infection together with CMV 
infection throughout the lungs [68].

Bacteria and parasites
An extensive study using NHANES III data examined 
interactions between bacteria and parasites and their 
mutual association with cognitive function by looking 
at Helicobacter pylori and Toxoplasma gondii seroposi-
tivity among 1785 young and middle-aged adults with 
ages between 20 and 59  years [69]. The study showed 
that joint infection by these two pathogens increased 
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susceptibility to cognitive deficits compared to the effect 
of a single infection. Interestingly, the study also revealed 
an association between Helicobacter pylori seropositivity 
and some of the other tested factors. In particular, partic-
ipants with lower levels of education were at greater risk 
of cognitive deficits than more highly educated seroposi-
tive participants. Race-ethnicity also appeared to be an 
important factor relating to Helicobacter pylori seroposi-
tivity and cognitive functions [69].

Bacteria and fungi
The coincidence of bacterial and fungal infections was 
studied by Alonso et  al., who combined immunohisto-
chemical analysis with PCR experiments and next-gen-
eration sequencing of different CNS tissues obtained 
from AD patients, elderly people, and healthy controls 
[14]. Immunohistochemical analyses showed that num-
bers of fungal structures were highest in tissues posi-
tive for AD, while next-generation sequencing revealed 
that Alternaria, Botrytis, Candida, and Malassezia were 
the most strongly represented fungal genera (Table  2). 
Detailed assessments showed Alternaria and Malassezia 
to be more prominent in AD samples, while Aspergillus, 
Candida, and Davidiella dominated in the elderly group 
and samples from young subjects had the highest levels 
of Phoma and Botrytis. Next-generation sequencing of 
bacterial DNA in CNS tissues revealed that AD patients 
had higher levels of Burkholderiaceae and Staphylococ-
caceae transcripts, whereas Micrococcaceae, Pseudomon-
adaceae, Sphingomonadaceae, and Xanthomonadaceae 
were more abundant in controls [14].

Bacteria, viruses and fungi
The multi-pathogen infectious burden due to bacte-
ria, viruses, and fungi was examined by Pisa et  al., who 
searched for fungal, bacterial, and viral proteins in 
small bodies known as corpora amylacea that are com-
monly observed in the brains of patients with neurologi-
cal disease [19]. Mass spectrometry analysis was used to 
identify fungal, bacterial, and viral peptides in corpora 
amylacea fractions from the brains of two AD patients. 
Additionally, fungal genera were identified by nested 
PCR. This battery of methods revealed the presence of 
fungal and bacterial peptides and sequences, but no pep-
tides corresponding to viruses were found in the studied 
samples [19].

Bacteria, viruses, fungi and parasites
Pisa et al. tested for the presence of early and latent forms 
of HSV-1, Borrelia burgdorferi, Chlamydia pneumoniae, 
Candida species and Toxoplasma gondii in 10 brain 
samples from AD patients using immunohistochemistry 
and nested PCR [20]. Immunohistochemical analyses 

revealed the presence of several fungal structures, while 
PCR analysis followed by sequencing confirmed the pres-
ence of several bacterial species (Table 2). However, the 
simultaneous presence of HSV-1, Chlamydia pneumo-
niae, Borrelia burgdorferi, and Toxoplasma gondii was 
not confirmed [20].

Antimicrobial therapeutic strategies
General considerations
Several working hypotheses that were proposed to 
explain the complex origins of AD have served as start-
ing points for drug development. However, none of 
these efforts has yielded effective treatments, suggesting 
that the underlying hypotheses may be invalid [70]. The 
multi-microbial infectious hypothesis merges two previ-
ously established AD hypotheses: (i) production of the 
antimicrobial Aβ peptide as part of an innate immune 
response [71–74] and (ii) stimulation of neuroinflam-
mation [75, 76]. New therapeutic strategies for AD can 
be envisioned based on systematic diagnostic testing for 
multiple pathogens followed by therapy using antiviral, 
antibacterial, anti-inflammatory, anti-fungal, and anti-
biofilm agents (Table 3).

Treatment with antiviral agents
Two recent population studies conducted in Taiwan 
showed that antiviral treatment could help prevent 
dementia in patients with viral infections. The first 
showed that only 5.8% of HSV-1 and HSV-2 infected 
patients treated with anti-herpetic medications devel-
oped dementia over a 10-year follow-up period compared 
to 28.3% of untreated HSV-infected patients. Treatment 
of these HSV-1 and HSV-2 infected patients with the 
antiviral agent acyclovir, famciclovir, ganciclovir, valacy-
clovir and valganciclovir, either individually or in com-
bination, reduced the risk of developing dementia [77]. 
The second study showed that treatment with antiviral 
agents reduced the risk of developing dementia by 45% in 
patients infected with herpes zoster compared to that for 
untreated infected patients [78]. Another interesting case 
is that of two siblings with chromosomally-integrated 
HHV-6A who suffered from cognitive difficulties. Several 
repeated courses of treatment with valganciclovir led to 
a near-complete clinical resolution in both patients [79]. 
The most generally promising drug for the treatment 
of herpetic viral infections appears to be valacyclovir, 
a  prodrug of acyclovir. Valacyclovir was one of the first 
antivirals to enter into clinical trials against AD because 
of its high selectivity towards infected cells, favourable 
safety profile, and ability to enter the CNS. Its most obvi-
ous disadvantage is its narrow anti-herpetic effectivity; it 
is most potent against HSV-1 and HSV-2 [80, 81].
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Treatment with antibacterial agents
Antibiotics are very important drugs used to treat bacte-
rial and fungal infections. The antibacterial agents most 
commonly investigated in the context of AD are doxy-
cycline and rifampicin (rifampin). Twenty-eight years 
ago, Namba et al. reported an absence of senile plaques 
in leprosy patients who had undergone long-term treat-
ment with rifampicin [82]. Twelve years later, Loeb et al. 
performed a controlled trial with 101 patients diagnosed 
with mild to moderate AD, who were randomly split into 
two groups. Over 3  months, one group received com-
bined therapy with rifampin (300  mg) and doxycycline 
(200  mg), while the second group received a placebo 
[83]. Cognitive function evaluations revealed that the 
antibiotic-treated group exhibited significantly lower 
levels of cognitive decline after six months. Interestingly, 
both of these antibiotics also exhibit anti-amyloidogenic 
activity [84–87]. Balducci and Forloni also showed that 
doxycycline could abolish amyloid-β oligomer-mediated 
memory impairment and reduce neuroinflammation in 
mouse models of AD [88]. Kountouras et  al. found that 
AD patients who received a successful triple eradication 
therapy with omeprazole, clarithromycin, and amoxi-
cillin had better cognitive and functional results at a 
2-year check-up than patients who did not receive such 
treatment [89]. Another antibiotic with promising anti-
neuroinflammatory and the neuroprotective effect is 
minocycline [90–92]. In a mouse model of AD, minocy-
cline reversed memory impairment caused by the admin-
istration of amyloid-β oligomers and reduced levels of 
the inflammatory cytokines L-1β, TNF-α, IL-4 and IL-10 
in the brain and serum [93]. On the other hand, Howard 
et  al. reported that minocycline did not delay the pro-
gress of cognitive or functional impairment in patients 
with mild AD over 2 years [94]. In addition to antibiotics, 

small-molecule inhibitors targeting gingipains, toxic 
proteases from P. gingivalis, have been developed [95]. 
One such compound, COR388, is currently being tested 
against AD in a Phase 2/3 clinical trial. In a recent study, 
aged dogs with oral infections of P. gulae and periodontal 
disease were treated with COR388 by oral administra-
tion. COR388 inhibited the lysine-gingipain target and 
reduced the P. gulae load in the saliva, buccal cells, and 
gingival crevicular fluid [96].

Treatment with antifungal agents
Clinical trials with antifungal compounds were proposed 
by Alonso et  al. [48]. Voriconazole, fluconazole, flucy-
tosine and amphotericin B deoxycholate are antifungals 
with good CNS permeability that may be suitable for 
this purpose. In some cases, it may be beneficial to com-
bine such treatments with neurosurgery, as noted in a 
recent review by Goralska et  al. [97]. Combined thera-
pies should also be considered for AD patients exhibiting 
signs of a multifungal infectious burden [51].

Treatment with antiparasitic agents
Antiparasitic treatments targeting Toxoplasma gondii 
rely on two types of drugs, namely inhibitors of dihydro-
folate reductase and dihydropteroate synthetase [98]. The 
first choice agent for treating neurotoxocariasis is likely 
to be albendazole, which exhibits good blood–brain per-
meability [99]. Because achieving efficient uptake of such 
drugs into tissues (particularly the brain) is very chal-
lenging, considerable efforts have been made to develop 
alternative derivatives, formulations, or delivery vehi-
cles. Polyethylene glycol-conjugated and chitosan- or 
liposome-encapsulated compounds resulting from these 
efforts have demonstrated significant efficiency gains 

Table 3 Antimicrobial agents that have been used to treat patients with AD

NA not available at this moment

Authors, Years Agents Participants Study design Outcome References

Tzeng et al., 2018 Acyclovir, Famciclovir, 
Gangciclovir, Valacyclovir, 
Valganciclovir

8362 Cohort study Decreased risk of dementia [77]

Devanand et al., 2020 Valacyclovir 130 Randomized, double-blind, 
controlled trial

NA [81]

Loeb et al., 2004 Rimfapicin, Doxycycline 101 Randomized, triple-blind, 
controlled trial

Lower cognitive decline [83]

Kountouras et al., 2009 Amoxicillin, Clarithromycin 56 Cohort study Cognitive function improve-
ment

[89]

Howard et al., 2020 Minocycline 554 Randomized, double-blind, 
controlled trial

No effect on cognitive function [94]

Dominy et al., 2019 COR388 573 Randomized, double-blind, 
controlled trial

NA [95]
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[100]. Albendazole combined with praziquantel is also an 
effective treatment for neurocysticercosis [101].

Treatment with anti‑biofilm agents
An important aspect of AD’s infection hypothesis is that 
some microorganisms can evade immune responses 
by various mechanisms, particularly by forming bio-
films. Biofilms were first described by Costerton et  al., 
who observed clustering of bacteria in a  polysaccharide 
matrix [102]. These structures are organized systems that 
protect microorganisms against stressful conditions and 
are formed by both bacteria and fungi [103]. Interest-
ingly, viruses have also been shown to form biofilm-like 
assemblies [104]. Additionally, biofilms can be polymi-
crobial, allowing multiple microbe species to co-exist 
in one community [105]. For example, Mazaheritehrani 
et  al. showed that Candida biofilms also shield HSV-1 
viruses, which remain infective and releasable under 
this protection [106]. A subsequent study showed that 
this shelter protects HSV-1 against physical and chemi-
cal treatments, including laser and aciclovir or foscar-
net therapy [107]. Coexistence of bacteria and fungi has 
also been reported [108]. In the context of AD pathol-
ogy, some researchers have suggested that amyloid senile 
plaques in CNS tissues are biofilms [109, 110]. If so, bio-
films are important therapeutic targets. This may also be 
true for Toxoplasma gondii because current treatments 
are effective against the active (tachyzoites) stage but 
ineffective against the latent cystic stage (bradyzoites) 
[98].

There are ongoing efforts to develop treatments tar-
geting fungal and bacterial biofilms [111, 112] and Toxo-
plasma tissue cysts [113]. In addition to the compounds 
mentioned above, there is considerable interest in the 
opportunities offered by N-acetylcysteine, which was 
repeatedly found to have beneficial effects in the treat-
ment of neurodegenerative diseases including AD [114]. 
Importantly, this compound exhibits strong activity 
against biofilms of both bacteria and Candida [115, 116]. 
Supportive treatments based on essential oils have also 
shown promise. For example, experimental studies per-
formed by Feng et al. revealed that certain essential oils 
are highly effective against the stationary phase of Borre-
lia burgdorferi [117, 118] and various fungi [119].

Conclusions
A growing number of research projects are probing the 
roles of pathogens in the development of AD. In the past, 
studies of this type focused mainly on individual patho-
gens [120, 121]. However, a growing body of evidence 
suggests that the aetiology of AD is driven at least in part 
by the coexistence of multiple pathogens. This insight 
may open up new ways of understanding, studying, and 

treating this disease, or even of preventing its onset 
altogether.

From the standpoint of prevention, it is noteworthy 
that changes in brain functionality appear long before the 
onset of AD-induced cognitive dysfunction [122]. More-
over, various fungi and bacteria have been detected in 
disease-free control subjects [14, 51], and several studies 
have demonstrated connections between infectious bur-
den and reduced cognitive function in adults [25, 66, 69]. 
This suggests a need for further research on screening for 
various pathogens in multiple matrices using a battery of 
diagnostic methods. The detection of specific pathogens 
or pathogen classes in middle-aged adults showing early 
signs of reduced cognitive function could then be fol-
lowed by personalized preventative anti-microbial treat-
ment (Fig.  3). Similar procedures could also be applied 
to patients already suffering from AD. Additionally, 
pathogens’ natural tendency to evade the immune system 
should be taken into account during diagnosis and when 
choosing treatments.

It is well established that the microbiomes of our bod-
ies host vast microbial communities. These microbial 
communities communicate with each other internally, 
but they also communicate externally with the human 
host, affecting many metabolic processes [123]. They 
influence the immune system but also modulate the 
development of neural tissues in conjunction with neu-
romodulators and neurotransmitters. As a result, they 
can profoundly influence health [124]. The influence of 
changes in the gut microbiome on AD has been investi-
gated [125, 126]. Several environmental factors, including 
antibiotic and antifungal treatments, can cause the devel-
opment of a dysbiotic state within these communities 
[127, 128]. Mounting evidence indicates that gut dysbio-
sis may promote Aβ aggregation and neuroinflammation 
in AD development [129]. Broad-spectrum antimicrobi-
als can be thus “two-edged swords”. Therefore, additional 
measures to optimize the gut microbiota composition, 
including probiotics, specific foods, and dietary patterns, 
should be taken into account when considering potential 
antimicrobial AD treatments.

Another recent discovery that could play an incredibly 
important role in diagnosing and treating AD, particu-
larly when considering treatments targeting polymicro-
bial infections, is that the brain might have its unique 
microbiome [130]. This theory is supported by the results 
of Alonso et al., who demonstrated the presence of vari-
ous bacterial and fungal species in both AD patients 
and healthy controls [14]. Further research on AD from 
the poly-microbial-inflammatory-microbiome point of 
view is therefore needed. The results of such studies may 
reveal a need for more personalized and complex ways of 
both diagnosing and treating the disease.
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