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Abstract 

Background:  Yarrowia lipolytica is an oleaginous yeast that can be genetically engineered to produce lipid and 
non-lipid biochemicals from a variety of feedstocks. Metabolic engineering of this organism usually requires genetic 
markers in order to select for modified cells. The potential to combine multiple genetic manipulations depends on 
the availability of multiple or recyclable selectable markers.

Results:  We found that Y. lipolytica has the ability to utilize acetamide as the sole nitrogen source suggesting that the 
genome contains an acetamidase gene. Two potential Y. lipolytica acetamidase gene candidates were identified by 
homology to the A. nidulans acetamidase amdS. These genes were deleted in the wild-type Y. lipolytica strain YB-392, 
and deletion strains were evaluated for acetamide utilization. One deletion strain was unable to grow on aceta-
mide and a putative acetamidase gene YlAMD1 was identified. Transformation of YlAMD1 followed by selection on 
acetamide media and counterselection on fluoroacetamide media showed that YlAMD1 can be used as a recyclable 
genetic marker in Saccharomyces cerevisiae and Ylamd1Δ Y. lipolytica.

Conclusions:  These findings add to our understanding of Y. lipolytica nitrogen utilization and expand the set of 
genetic tools available for engineering this organism, as well as S. cerevisiae.
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Background
Yarrowia lipolytica is a non‐conventional yeast of interest 
to the biotechnology industry that is rapidly emerging as 
a valuable host for the production of a variety of lipid and 
non-lipid biochemicals [1]. It is a dimorphic, oleaginous 
yeast that has been approved by the US Food and Drug 
Administration for use in manufacturing processes that 
are generally regarded as safe (GRAS) [2]. It possesses 
unique phenotypes, including hydrocarbon assimilation 
[3–8], specialty lipid and organic acid production [3, 9–
13], and resistance to harsh environments including high 

salinity [3, 14], broad pH range [3, 15], and ionic liquids 
[3, 16].

Yarrowia lipolytica’s physiology, metabolism, and 
genetic regulation diverge significantly from more well‐
studied and characterized yeasts such as Saccharomyces 
cerevisiae creating the need to adapt culture and genetic 
tools [17]. Metabolic engineering of yeast strains usu-
ally requires genetic markers in order to select for those 
cells that contain the desired genetic modifications. The 
construction of multiple successive genetic modifications 
is typically limited by the number of selection mark-
ers available in the host or requires marker recycling. 
There are two types of selection markers used for genetic 
manipulations in Y. lipolytica [18]: auxotrophic mark-
ers [19–21] and dominant markers [22–25]. Currently, 
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only the uracil auxotrophy marker is counterselectable 
and lends itself to marker recycling through the use of 
5′-fluoroorotic acid.

The Aspergillus nidulans acetamidase gene amdS has 
been successfully used as a dominant selection marker in 
filamentous fungi, the yeast Kluyveromyces lactis, and S. 
cerevisiae [26–32]. Acetamidase hydrolyzes acetamide to 
acetate and ammonia, making both carbon and nitrogen 
available to the cell and enabling growth on acetamide as 
the sole source of either of these elements [33, 34]. As a 
marker, amdS can be recycled through counterselection 
with fluoroacetamide, an acetamide homologue that is 
converted to the toxic compound fluoroacetate in the 
presence of active acetamidase [35, 36]. Fluoroacetamide 
counterselection has been applied to cure genetically 
engineered strains from recombinant constructs carrying 
the amdS gene [37].

In the present study, we examine acetamide utiliza-
tion by Y. lipolytica, identify the gene responsible for the 
major Y. lipolytica acetamidase activity, and demonstrate 
its use as a counterselectable marker in this organism as 
well as S. cerevisiae.

Results and discussion
Acetamide utilization in Y. lipolytica
To study acetamide utilization in Y. lipolytica, we tested 
growth of wild type strain YB-392 on defined media con-
taining either acetamide or a combination of ammonium 
sulfate and fluoroacetamide as the sole nitrogen source. 
YB-392 was able to grow on acetamide media suggesting 
the presence of a functional acetamidase gene (Fig.  1a). 
When plated on fluoroacetamide media, YB-392 initially 
doesn’t grow (in agreement with the presence of a func-
tional acetamidase) but gives rise to colonies after 5 days 
indicating it can bypass the toxicity of fluoroacetamide 
(Fig. 1b).

As there are no known acetamidase genes in Y. 
lipolytica, we searched for the gene(s) responsible 
for growth on acetamide. We used the A. nidulans 
amdS amino acid sequence to query the Y. lipolytica 
genome. A. nidulans is a filamentous fungus and its 
amdS gene was functional in the yeast S. cerevisiae that 
shares many selection markers with Y. lipolytica. Our 
BLAST [38] search identified the two closest amdS 
homologues: YALI0E34771 (E score 1 × 10−86) and 
YALI0E11847 (E score 3 × 10−79). To evaluate their role 
in acetamide utilization, we used targeted integration 
of the nat1 marker to delete each of these genes, cre-
ating strains NS995 (YALI0E34771::nat1) and NS996 
(YALI0E11847::nat1)  (Table  1). To confirm the gene 
knock-outs and nat1 insertions, genomic DNA was 
isolated from strains YB-392, NS995, and NS996 and 
screened by PCR as well as sequencing of the target 

loci in the modified strains. PCR results confirmed 
the replacement of each target gene by the antibiotic 
resistance marker (Fig. 2). Sequencing results also con-
firmed the presence of the nat1 sequence in place of 
YALI0E34771 and YALI0E11847 in NS995 and NS996 
respectively (data not shown). 

Growth comparisons of Y. lipolytica strains YB-392, 
NS995, and NS996 were carried out in batch fermenta-
tions to determine whether the gene deletions made in 
NS995 and NS996 had a deleterious effect on growth 
rates. The 3 strains were grown in 1 L fermenters using 
ammonium sulfate as a nitrogen source. Samples were 
removed every 2  h and growth continued until nitro-
gen was exhausted. Doubling times and specific growth 
rates were calculated from the optical densities (OD600) 
(Fig. 3). Based on the fermentation data the deletion of 
YALI0E34771 and YALI0E11847 and their replacement 
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Fig. 1  Y. lipolytica growth on acetamide and fluoroacetamide. 
Strains YB-392, NS995, and NS996 were streaked on defined media 
containing a 2.3 g/L acetamide as the sole nitrogen source, or b 
5 g/L ammonium sulfate and 4.6 g/L fluoroacetamide. Plates were 
incubated at 30 °C for 5 days
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with nat1 did not affect the growth rate of either strain 
on ammonium when compared to the parental wild-
type strain YB-392.

We tested the deletion strains for growth on aceta-
mide and fluoroacetamide in a side by side comparison 
(Fig.  1). YB-392 and NS996 behaved similarly on each 

plate suggesting that YALI0E11847 is likely not involved 
in acetamide utilization. In contrast, NS995 lost the 
ability to grow well on acetamide and gained resistance 
to fluoroacetamide. We conclude that YALI0E34771 is 
most likely involved in acetamide utilization under the 
conditions tested in this study and refer to this gene as 
YlAMD1.

There is a small amount of NS995 growth on acetamide 
(Fig.  1a) suggesting that minor pathways of acetamide 
utilization could be present in addition to YlAMD1 or 
that the strain is able to scavenge nitrogen from unknown 
impurities in the media. To investigate this growth fur-
ther, we performed a titration of acetamide in defined 
media agar plates and followed the growth of YB-392, 
NS995 and NS996 over 4  days (Fig.  4). None of the 
strains formed colonies in the absence of an added nitro-
gen source indicating that other media components did 
not contain nitrogen accessible and sufficient for growth. 
All three strains showed robust growth when ammonium 
sulfate was supplied. For YB-392 and NS996, growth on 
2.3  g/L or higher acetamide was similar to growth on 
ammonium sulfate whereas growth at lower acetamide 
concentrations required an additional day or two to form 
larger, defined colonies. N995 had a visible growth defect 
on acetamide compared to the other strains, in agree-
ment with a role for YlAMD1 in acetamide utilization. 
This Ylamd1Δ strain was able to form small slow-growing 
colonies at rates dependent on acetamide concentration. 
This growth could be due to a secondary acetamidase 
activity or an impurity in the acetamide supply.

Evaluation of YlAMD1 as a selectable and counterselectable 
marker in Y. lipolytica and S. cerevisiae
We evaluated YlAMD1 as a selectable marker by trans-
forming both Y. lipolytica Ylamd1Δ strain NS995 and 
haploid S. cerevisiae strain S288C with a plasmid capa-
ble of expressing YlAMD1 in either organism (pNC1344, 
Fig.  5). Control transformations failed to form colo-
nies while YlAMD1-transformed cells gave rise to well-
defined colonies on acetamide plates (Fig. 6).

Acetamide-positive transformants from each strain 
background were used to investigate whether the 
YlAMD1 plasmid can be cured using the acetamide hom-
ologue fluoroacetamide. These acetamide isolates were 
streaked on fluoroacetamide media for counterselection 
and gave rise to a few fluoroacetamide-resistant colo-
nies (see flow diagram in Fig. 7a), suggesting loss of the 
YlAMD1 plasmid. Fluoroacetamide-resistant S. cerevi-
siae colonies were restreaked on fluoroacetamide media 
to ensure loss of the multicopy 2μ plasmid. The parent 
strain (S288C or NS995), several YlAMD1 transformants 
and their fluoroacetamide-resistant derivatives were 
patched onto defined media with either 5 g/L ammonium 
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YALI0E34771 YALI0E11847
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Fig. 2  Gene deletion confirmation. Genomic DNA from strains 
YB-392, NS995 and NS996 was probed for the presence of the 
deletion target genes (“wt”) and the integrated antibiotic resistance 
cassette (“nat”) by PCR. YB-392 contains both the YlAMD1 gene 
YALI0E34771 (lane 3) and YALI0E11847 (lane 7) but neither nat1 
integration-specific product (lanes 2 and 6). PCR confirms the 
absence of YALI0E34771 and YALI0E11847 in NS995 and NS996 
respectively (lanes 5 and 9) while each of these strains contains the 
targeted-integration specific nat1 product (lanes 4 and 8)

Table 1  Strains used in this study

Strain Genotype Source

YB-392 Y. lipolytica Wild type NRRL#YB-392

S288C S. cerevisiae Mat-alpha Suc2 mal mel 
gal2 CUP1 flo1 flo8-1 
hap1

ATCC 204508 strain S288C

NS995 Y. lipolytica YALI0E34771::nat1 This study

NS996 Y. lipolytica YALI0E11847::nat1 This study
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Fig. 3  Growth comparison. 1 L batch fermentations of strains YB-392, 
NS995, and NS996 were sampled every 2 h. Specific growth rates 
and doubling times were determined using optical density readings 
(OD600)
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Fig. 4  Acetamide titration. Strains YB-392, NS995, and NS996 were streaked on defined media containing no added nitrogen source, acetamide as 
the sole nitrogen source, or ammonium sulfate as the sole nitrogen source in the concentrations shown. Plates were incubated at 30 °C for 2–4 days
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sulfate or 0.56  g/L acetamide as nitrogen source. Those 
isolates that arose from fluoroacetamide counterselection 
no longer grew on acetamide (Fig.  7b). PCR screening 

confirmed the presence of YlAMD1 in the original 
pNC1344 transformants and showed YlAMD1 was not 
present in the parental strains NS995 and S288C, or in 
the isolates after counterselection on fluoroacetamide 
plates (Fig. 7c). The lineages leading from parent strains 
to fluoroacetamide-resistant isolates are described in 
Additional file 1.

Taken together, these results demonstrate that 
YlAMD1 can be used as a dominant and counterselecta-
ble marker for genetic modifications in Ylamd1Δ Y. lipo-
lytica strains as well as S. cerevisiae, allowing for marker 
recycling for future bioengineering of the strains with the 
same marker. Although the Ylamd1Δ Y. lipolytica strain 
is an acetamide auxotroph, the deletion is not expected 
to affect central metabolism to the extent of other auxo-
trophic markers, such as URA3 and LEU2. YlAMD1 may 
therefore be particularly useful in physiology studies or 
in industrial applications were auxotrophic supplementa-
tion is undesirable [39].

Conclusions
In the present study, we examined acetamide utilization 
by Y. lipolytica and determined that this oleaginous yeast 
is able to grow on acetamide as the sole nitrogen source. 
After deletion of two candidate genes, we showed that 
YlAMD1 encodes the major Y. lipolytica acetamidase 
activity and demonstrated its use as a counterselectable 
marker in this organism and S. cerevisiae. These findings 
add to our understanding of Y. lipolytica metabolism and 
expand the set of genetic tools available for engineering 
this organism.

Methods
Strains, media, and cultivation methods
The wild type yeast strains used for this study were Y. 
lipolytica YB-392 from the ARS (NRRL) culture col-
lection and S. cerevisiae S288C (ATCC 204508). Yeast 
strains were cultivated under non-selective conditions 
in either YPD media (10 g/L yeast extract, 20 g/L bacto 
peptone, 20  g/L glucose) or defined medium contain-
ing 20  g/L glucose, 5  g/L (NH4)2SO4, 3  g/L KH2PO4, 
0.5 g/L MgSO4·7H2O, 0.05 mg/L biotin, 25 mg/L myo-
inositol, 1  mg/L d-pantothenic acid, 1  mg/L nicotinic 
acid, 1  mg/L thiamine, 1  mg/L pyridoxine, 0.2  mg/L 
p-aminobenzoic acid, 1  mg/L H3BO3, 0.3  mg/L 
CuSO4·5H2O, 0.1  mg/L KI, 0.4  mg/L Na2MoO4·2H2O, 
4.5  mg/L ZnSO4·7H2O, 3  mg/L FeSO4·7H2O, 1  mg/L 
MnCl2·2H2O, 15  mg/L EDTA, 0.3  mg/L CoCl2·6H2O, 
4.5 mg/L CaCl2·2H2O. Acetamide selection media was 
prepared as for the defined media above except that 
5 g/L (NH4)2SO4 was replaced with 0.56–9.2 g/L aceta-
mide (Sigma-Aldrich, catalog #A0500–100 g) and with 
the addition of 6.6  g/L K2SO4 and 5.25  g/L disodium 

Fig. 5  YlAMD1 plasmid map. pNC1344 contains sequences for 
propagation in E. coli, Y. lipolytica and S. cerevisiae and has an 
expression cassette capable of expressing YlAMD1 in both Y. lipolytica 
and S. cerevisiae 
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Fig. 6  YlAMD1 enables acetamide utilization and serves as a positive 
selection marker in Y. lipolytica Ylamd1Δ strain NS995 and S. cerevisiae 
S288C. Control (left) and pNC1344-YlAMD1 (right) transformations 
were plated on 2.3 g/L acetamide plates and incubated at 30 °C for 
5 days (Y. lipolytica NS995, top) or 2 days (S. cerevisiae S288C, bottom)
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phthalate (buffers at pH 5.6–5.8) [40]. For negative 
selection on fluoroacetamide, 4.6  g/L fluoroacetamide 
(MP Biomedicals, LLC, catalog #213878) and 5.25  g/L 
disodium phthalate were added to defined media. For 
solid media 15  g/L of agar was added to the media 
described above. All yeast strains were cultivated at 
30 °C. Antibiotic selection was achieved with the addi-
tion of nourseothricin at 50 μg/mL for S. cerevisiae and 
500 μg/mL for Y. lipolytica.

YlAMD1 plasmid construction
Plasmid construction was based on standard molecu-
lar biology practices and protocols. Restriction enzymes 
and other molecular biology enzymes were acquired 
from New England Biolabs (Ipswich, MA). TOP10 elec-
trocompetent (ThermoFisher Scientific, N.Y.) and DH5 
alpha chemically competent (N.E. Biolabs) E. coli cells 
were used to propagate plasmids and the final con-
struct, pNC1344, was confirmed by Sanger sequencing 
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Fig. 7  Plasmid curing through fluoroacetamide counterselection. a Acetamide-positive pNC1344-YlAMD1 transformants were plated on 
fluoroacetamide media for counterselection of the acetamidase plasmid. b Parent strains Y. lipolytica NS995 (“Yl”) and S. cerevisiae S288C (“Sc”), 
acetamide-positive pNC1344-YlAMD1 transformants and fluoroacetamide-resistant isolates derived from these transformants were patched on 
defined media containing either 5 g/L ammonium sulfate or 0.56 g/L acetamide as the sole nitrogen source and incubated at 30 °C for 2 days. c The 
strains in B were probed for the presence of the plasmid using primers specific for the YlAMD1 gene
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(Wyzer Biosciences). The Y. lipolytica YALI0E34771 
gene, YlAMD1, was PCR amplified from YB-392 genomic 
DNA with primer pair NP3157/NP3158, using Phusion 
DNA polymerase and cloned into an expression cassette 
using the PGK1 promoter derived from Arxula aden-
inivorans and the FBA1 terminator derived from S. cer-
evisiae. Both these elements drive gene expression in Y. 
lipolytica and S. cerevisiae (Novogy unpublished data). 
Additionally, pNC1344 carries ARS and CEN sequences 
for replication and plasmid maintenance in Y. lipolytica 
as well as the 2μ sequence for episomal plasmid main-
tenance in S. cerevisiae. The presence of the plasmid in 
pNC1344 transformants was confirmed using YlAMD1 
internal primers NP3379/NP3334. Primer sequences can 
be found in Additional file 1.

Gene deletion in Yarrowia lipolytica
The Y. lipolytica YALI0E34771 and YALI0E11847 genes 
were deleted as follows: A two-fragment deletion cassette 
was amplified by PCR from a plasmid containing the 
nourseothricin resistance gene (nat1) such that the nat1 
gene was split into two fragments that overlapped and 
were flanked by ~ 50 bp of homology to the upstream and 
downstream regions of the coding sequence. The result-
ing PCR fragments were co-transformed into hydrox-
yurea-treated YB-392 [41]. Nourseothricin resistant 
colonies were screened by PCR to confirm the absence 
of the targeted gene and the presence of the nat1 gene at 
the targeted locus. The primer pairs used to amplify the 
deletion cassette and probe for the presence of the target 
genes and targeted nat1 integration are listed in Addi-
tional file 1. The modified loci in NS995 and NS996 were 
amplified with external primers and the fragments were 
sequenced to confirm gene replacement. PCR amplifi-
cation and sequencing primers are listed in Additional 
file 1.

Yeast transformations
For Y. lipolytica transformations, log phase cells were 
either treated with 50  mM hydroxyurea for 2  h (gene 
deletions) [41] or were processed directly for transfor-
mation (plasmid transformation) [23]. Y. lipolytica com-
petent cells were prepared following a protocol adapted 
from Chen et al. [42]. Cells were washed with water and 
resuspended in a volume of water equal to the volume of 
the wet cell pellet. 50  µl was aliquoted per transforma-
tion reaction, cells were centrifuged, and the supernatant 
was discarded. 18 μL of DNA and 92 μL of transforma-
tion mix (80 μL 60% polyethylene glycol 4000, 5 µl 2 M 
dithiothreitol, 5 µL 2 M lithium acetate pH 6, 2 µl 10 mg/
mL single-stranded salmon sperm DNA) were added 
to the cell pellet. The cells, DNA, and transformation 
mix were vortexed and then incubated at 39  °C for 1 h. 

For S. cerevisiae transformations, log phase cells were 
washed with water and resuspended in 1  mL water per 
100 OD units of cells. The transformation protocol was 
adapted from Gietz and Woods [43]. 100  µl was ali-
quoted per transformation reaction.  14 μL of DNA and 
286 μL of transformation mix (240 μL 50% polyethylene 
glycol 3350, 36 µl 1 M lithium acetate, 10 µl 10 mg/mL 
single-stranded salmon sperm DNA) were added to the 
cell pellet. The cells, DNA, and transformation mix were 
vortexed and then incubated at 42 °C for 40 min. For all 
yeast transformations, the cells were centrifuged after 
heat shock, the supernatant was discarded, and the cells 
were resuspended in 1 mL YPD and incubated overnight 
at 30 °C, 200 rpm. Following the overnight recovery, the 
transformations were plated to selective media and incu-
bated at 30 °C.

Bioreactor cultures for growth characterization
Frozen working-stocks of strains YB-392 and NS995 were 
spread onto a YPD plate and grown overnight at 30  °C. 
For each strain, a 10 µL loopful of cells was removed from 
the plate and used to inoculate a 250 mL Erlenmeyer flask 
with 50  mL of defined shake flask medium consisting 
of: glucose (30  g/L), (NH4)2SO4 (5  g/L), KH2PO4 (3  g/L), 
MgSO4·7H2O (0.5  g/L), d-biotin (0.05  mg/L), Ca-d-pan-
tothenate (1 mg/L), nicotonic acid (1 mg/L), myo-inositol 
(25  mg/L), thiamine hydrochloride (1  mg/L), pyridoxal 
hydrochloride (1  mg/L), p-aminobenzoic acid (0.2  mg/L), 
Na2EDTA (1.5  mg/L), ZnSO4·7H2O (0.45  mg/L), 
MnCl2·2H2O (0.1  mg/L), CoCl2·6H2O (0.03  mg/L), 
CuSO4·5H2O (0.03  mg/L), Na2MoO4·2H2O (0.04  mg/L), 
CaCl2·2H2O (0.45  mg/L), (NH4)2FeSO4·6H2O (0.3  mg/L), 
H3BO3 (0.1  mg/L), KI (0.01  mg/L), potassium hydrogen 
phthalate (2  g/L), and disodium phthalate (12  g/L). The 
pH of the medium was 5.5. Inoculum flasks were cultured 
overnight at 30  °C with constant agitation of 200  rpm in 
a New Brunswick I26 incubator shaker, whereupon the 
OD600 was measured. The volume of each flask culture 
required to initiate its corresponding 1 L bioreactor at a T0 
cell density of 1 OD600 was transferred to separate 50 mL 
sterile conical tubes. Each conical tube was then brought 
to 50 mL with sterile diH2O and centrifuged at 4000 rpm 
for 3  min in an Eppendorf 5810 R centrifuge. The super-
natant was decanted and the cells were then resuspended 
in 50  mL sterile diH2O. This washed inoculum was used 
to inoculate two 1 L bioreactors (Dasgip 1.2  L vessels) 
with medium consisting of: glucose (40  g/L), (NH4)2SO4 
(5 g/L), KH2PO4 (3 g/L), MgSO4·7H2O (0.5 g/L), D-biotin 
(0.05  mg/L), Ca-d-pantothenate (1  mg/L), nicotonic acid 
(1 mg/L), myo-inositol (25 mg/L), thiamine hydrochloride 
(1 mg/L), pyridoxal hydrochloride (1 mg/L), p-aminoben-
zoic acid (0.2  mg/L), Na2EDTA (1.5  mg/L), ZnSO4·7H2O 
(0.45  mg/L), MnCl2·2H2O (0.1  mg/L), CoCl2·6H2O 
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(0.03  mg/L), CuSO4·5H2O (0.03  mg/L), Na2MoO4·2H2O 
(0.04 mg/L), CaCl2·2H2O (0.45 mg/L), (NH4)2FeSO4·6H2O 
(0.3  mg/L), H3BO3 (0.1  mg/L), and KI (0.01  mg/L). Pro-
cess parameters included a pH control at 3.5 automatically 
adjusted with 10  N sodium hydroxide, a temperature of 
30  °C, aeration at 1.0  vvm air, and agitation controlled at 
1400 rpm. A sample of 5 mL was taken from each culture 
at 2-h intervals starting at ∆12 h with a Flownamics Seg-
flow automated sampler and continuing until nitrogen was 
depleted. The samples were continuously held at 4 °C after 
each harvest. The OD600 was measured for each sample and 
used to calculate the doubling time and cell specific growth 
rate for each strain. This process was repeated, again with 
YB-392, and additionally with NS996. The results for both 
YB-392 cultures were averaged.
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