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Abstract 

Background: Autoimmune diseases have been associated with changes in the gut microbiome. In this study, the 
gut microbiome was evaluated in individuals with dry eye and bacterial compositions were correlated to dry eye (DE) 
measures. We prospectively included 13 individuals with who met full criteria for Sjögren’s (SDE) and 8 individuals with 
features of Sjögren’s but who did not meet full criteria (NDE) for a total of 21 cases as compared to 21 healthy controls. 
Stool was analyzed by 16S pyrosequencing, and associations between bacterial classes and DE symptoms and signs 
were examined.

Results: Results showed that Firmicutes was the dominant phylum in the gut, comprising 40–60% of all phyla. On 
a phyla level, subjects with DE (SDE and NDE) had depletion of Firmicutes (1.1-fold) and an expansion of Proteobac-
teria (3.0-fold), Actinobacteria (1.7-fold), and Bacteroidetes (1.3-fold) compared to controls. Shannon’s diversity index 
showed no differences between groups with respect to the numbers of different operational taxonomic units (OTUs) 
encountered (diversity) and the instances these unique OTUs were sampled (evenness). On the other hand, Faith’s 
phylogenetic diversity showed increased diversity in cases vs controls, which reached significance when comparing 
SDE and controls (13.57 ± 0.89 and 10.96 ± 0.76, p = 0.02). Using Principle Co-ordinate Analysis, qualitative differences 
in microbial composition were noted with differential clustering of cases and controls. Dimensionality reduction and 
clustering of complex microbial data further showed differences between the three groups, with regard to microbial 
composition, association and clustering. Finally, differences in certain classes of bacteria were associated with DE 
symptoms and signs.

Conclusions: In conclusion, individuals with DE had gut microbiome alterations as compared to healthy controls. 
Certain classes of bacteria were associated with DE measures.
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Background
Sjögren’s syndrome (Sjögren’s) is a chronic autoimmune 
disease characterized by oral and ocular dryness. It is a 
common autoimmune disorder, affecting 0.5–4% of the 
population, with more than 2 million Americans living 
with the disease [1]. Recently, there has been an interest 
in understanding interactions between gut bacteria and 

mucosal immunity in a number of eye diseases including 
Sjögren’s [2]. In a homeostatic state, commensal bacteria 
serve as a metabolically active organ and aid the host in a 
plethora of activities [3]. For example, many plant poly-
saccharides cannot be directly digested and are instead 
transformed by gut bacteria into short-chain fatty acids 
(SCFAs), like acetic acid and butyric acid [4]. Interest-
ingly, some SCFAs enhance the death of effector T cells 
and promote proliferation of regulatory T cells in the 
intestine, and thus help suppress inflammation and the 
development of autoimmune disease [5]. On the other 
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hand, abnormal alterations in the gut bacterial commu-
nity (dysbiosis) can have negative effects on the host [6].

Individuals with autoimmune diseases have been found 
to have gut microbiome alterations compared to healthy 
controls, including individuals with spondylarthrosis, 
rheumatoid arthritis, Behçet’s, and Sjögren’s [7–10]. In 
Sjögren’s, greater relative abundances of Pseudobutyrivi-
brio, Escherichia/Shigella and Streptococcus and reduced 
relative abundances of Bacteroides, Parabacteroides, 
Faecalibacterium, and Prevotella were noted compared 
to controls. Reduced gut microbiome diversity was also 
found to correlate with overall disease severity [10]. The 
association between gut bacteria and autoimmune dis-
ease is likely a two-way street. On one hand, gut micro-
biome abnormalities can lead to systemic inflammation 
and, conversely, systemic inflammation can preferentially 
deplete beneficial gut bacteria and promote the growth of 
commensal bacteria with potential pathogenic properties 
[6, 11–14].

As there is limited data on gut microbial composi-
tion in Sjögren’s associated dry eye, we performed this 
study to evaluate the diversity, dimensionality and con-
stituency of the gut microbiome in individuals with dry 
eye in a South Florida population and to correlate gut 
microbiome profiles to clinical parameters of disease. 
Understanding the interactions between intestinal bio-
diversity and the immune system will be fundamental 

in deciphering and treating the pathogenesis and causes 
of autoimmune diseases, including eye diseases [15].

Results
Study population
21 subjects were enrolled in the study (Table  1), 13 
who met full Sjögren’s criteria (SDE) and 8 who did not 
(NDE). The mean age of the population was 60  years 
(range 33–71, standard deviation (SD) 8.8), 14 (67%) 
were female, 12 (57%) were white, and 8 (38%) were 
Hispanic. Comorbidities included diabetes (n = 2), 
hypothyroidism (n = 5), hypertension (n = 8),  sleep 
apnea (n = 4), rheumatoid  arthritis (n = 5), psoriatic 
arthritis (n = 1), systemic sclerosis (n = 1), and systemic 
lupus erythematosus (n = 1). In total, 8 subjects had a 
comorbid autoimmune disease, 3 in the SDE group and 
5 in the NDE group. No significant differences were 
noted in demographics or comorbidities between the 
SDE and NDE groups (Table 1). The mean DEQ 5 was 
11.6, mean OSDI was 41, and mean corneal staining 
was 7.2. Controls consisted of 21 individual samples 
provided by OpenBiome, who had no medical condi-
tions or autoimmune diseases. The mean age of the 
controls was 26 (range 19–35, SD = 5.6) with all con-
trols being male. Cases (SDE and NDE) (n = 21) were 
older than controls (59 vs 26, p = 0.07).

Table 1 Clinical characteristics of the study population

SDE individuals who met full Sjögren’s criteria, NDE individuals who did not meet the full Sjögren’s criteria, DEQ 5 Dry Eye Questionnaire 5, OSDI ocular surface disease 
index, SD standard deviation (range)

*mean ± SD (range); amore abnormal value between the two eyes

Variable No. of patients p-value All cases (n = 21)

Demographics SDE (n = 13) NDE (n = 8)

Age, years, mean ± SD (range) 58.8 ± 10.0 (33–71) 58.4 ± 7.0 (45–68) 0.90 58.7 ± 8.8 (33–71)

Gender, male, n (%) 4 (31%) 3 (38%) 0.76 7 (33%)

Race, white, n (%) 6 (46%) 6 (75%) 0.71 12 (57%)

Ethnicity, Hispanic, n (%) 3 (23%) 5 (63%) 0.40 8 (38%)

Smoking, n (%) 3 (23%) 1 (13%) 0.09 4 (19%)

Past, n (%) 2 (15%) 1 (13%) 3 (14%)

Current, n (%) 1 (8%) 0 (0%) 1 (5%)

Dry eye  symptomsa

 DEQ5 10.8 ± 5.0 (0–17) 12.9 ± 4.6 (5–18) 0.36 11.6 ± 4.8 (0–18)

 OSDI 37.5 ± 20.0 (12.5–83.3) 47.2 ± 26.5 (0–77.1) 0.35 41.2 ± 22.6 (0–83.3)

Dry eye  signsa

 Inflammation via inflammadry 1.5 ± 1.2 (0–3) 1.0 ± 1.0 (0-3) 0.42 1.3 ± 1.1 (0–3)

 Tear break up time 4.9 ± 2.1 (3–10) 7.0 ± 3.7 (2–13) 0.14 5.7 ± 2.9 (2–13)

 Corneal staining 6.6 ± 2.7 (2–11) 8.3 ± 4.9 (1–14) 0.34 7.2 ± 3.6 (1–14)

 Schirmer score 6.8 ± 2.4 (3–10) 10.1 ± 9.5 (1–25) 0.28 8.1 ± 6.1 (1–25)

 Meibum quality 2.5 ± 0.9 (2–4) 2.0 ± 1.0 (2–3) 0.39 2.4 ± 0.9 (0–4)
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Gut microbial landscape in cases compared to controls
Firmicutes was the dominant phylum in the gut in 
all individuals, composing between 40 and 60% of all 
phyla, followed by Bacteroidetes. Cases (SDE + NDE) 
had a depletion of Firmicutes (1.1-fold), and an expan-
sion of Proteobacteria (3.0-fold), Actinobacteria 
(1.7-fold) and Bacteroidetes (1.3-fold), compared to 
controls (Fig.  1a). There was no difference between 
cases and controls in terms of Bacteroides-Firmicutes 
ratio, although a lower ratio is considered a hallmark 
of inflammatory disease (Fig.  1b). While Clostridia, 
Bacteroidea and Actinobacteria were the dominant 
classes in all groups (Fig.  1c), Actinomycetaceae (3.6 
fold, p = 0.01), Eggerthellaceae (6.2 fold, p = 0.001), 
Lactobacillaceae (8.8 fold, p = 0.02), Akkermanci-
aceae (4.7 fold, p = 0.04), Coriobacteriaceae (2.5 fold, 
p = 0.04) and Eubacteriaceae (7.4 fold, p = 0.02) had 
significantly increased abundance in cases compared 
to controls.

Distance matrices show significant differences 
between case and control gut microbiota
Bray–Curtis principle co-ordinate analysis (pCoA; beta-
diversity, (Fig. 2a) was used to qualitatively examine dif-
ferences in microbial composition. There was a distinct 
clustering of controls compared to cases (blue, circled). 
When considering only individuals with overlapping 
ages in the study population, the groups still separated by 
DE status, suggesting that disease and not age was driv-
ing the effect. Next, unifrac distances were measured 
between the three groups and a pairwise PERMANOVA 
test was performed with false discovery rate correction 
(Fig.  2b; FDR; q-value). The same process was used to 
examine individuals with present versus absent comorbid 
autoimmune disease. The groups did not separate based 
on comorbid autoimmune status, suggesting that dry eye 
and not systemic autoimmune comorbidities were driv-
ing the effect (Fig. 2c and d).

Both SDE and NDE groups independently exhibited 
significant compositional changes compared to controls. 
No difference was noted between the SDE and NDE 

a

c

b

Fig. 1 Overall distribution of bacterial phyla and classes in the gut microbiome of controls, individuals who met full Sjögren’s criteria (SDE) 
and those that did not (NDE). a All three study groups exhibit a Firmicutes-Bacteroidetes dominated microbiome, with significant presence of 
Actinobacteria and Proteobacteria. b Bacteroidetes-Firmicutes ratio shows an upward trend for the SDE group, but it is statistically insignificant. c 
Dominant representative bacterial classes among all study subjects across the three study groups
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groups. There was a decrease in genera Faecalibacterium 
and Viellonella, classes Ruminococcaceae and Lachno-
spiraceae, and orders Clostridiales and Bacteroides, when 
comparing controls to NDE and progressively to SDE. 
There was also an increase in the genera Megasphaera, 
Parabacteroides and Prevotella in SDE (Fig.  2e). These 
differences were major contributors to the significant dif-
ferences seen in Figs. 2a–d, 3. α-Diversity matrices (Shan-
non and Faith) were unchanged between NDE and SDE 
(Fig. 3a and b respectively) and Shannon for Control and 
CAD (Fig. 3c), whereas the faith matrix was significantly 
changed between controls and ‘absent CAD’ as discussed 
later (Fig. 3d).

Group-wise dimensionality reduction shows differential 
clustering between controls and both case groups
We implemented non-linear dimensionality reduction on 
the microbiome data using both group-wise OTU matrix 
(Fig.  4a) and group-wise concatenated raw sequences 
(Fig. 4b). As mentioned in “Methods” section, these plots 
are phylogeny and sample ID agnostic and define a simi-
lar probability distribution of all OTUs within a group 
[16]. Similar parameters were used to generate a two-
dimensional density plot for controls, NDE and SDE sam-
ples. As seen in Fig. 4a, control OTUs showed a definite 
pattern of clustering that differed from the NDE and SDE 
groups. The differences encompassed the appearance of 
distinct clusters with disappearance of others and the 

SDE

Control

NDE

a

b

c

Control Prevotella

Faecalibacterium

Class- Lachnospiraceae

Bacteroides
Class- Ruminococcaceae

Order- Clostridiales

Viellonella

Parabacteroides

NDE SDE

Megasphaera

d
PERMANOVA-Controls/NDE/SDE

Group 1 Group 2 Sample size Permutations pseudo-F p-value q-value

SDE Control 34 999 3.2 0.001 0.003

SDE NDE 21 999 1.01 0.372 0.372

Control NDE 29 999 2.03   0.011 0.016

UNIFrac (unweighted)
Axis 2 (9.139 %)

Axis 1 (20.35 %)
Axis 3 (6.771 %)

PERMANOVA-pairwise

Group 1 Group 2
Sample 
size Permutations pseudo-F p-value q-value

Control Present CAD 28 999 1.67 0.03 0.045

Control Absent CAD 35 999 3.47 0.001 0.003

Present CAD Absent CAD 21 999 1.06   0.297 0.297

Axis 2 (9.139 %)

Axis 1 (20.35 %)
Axis 3 (6.771 %)

Present CAD

Absent CAD

Controls

e

UNIFrac (unweighted)

Fig. 2 Microbial differences between controls and cases. a Unweighted-Unifrac Principal co-ordinate analysis (pCoA) at the OTU level showing 
the distribution of the control, NDE, and SDE groups. Controls (circled) cluster distinctly compared to cases. The FDR-adjusted p-value (q-value) 
when comparing age-related differences between cases and controls is 0.668. This separation in the groups by case definition suggests that 
microbial changes are driven by dry eye status and not age. b Pairwise PERMANOVA on the UniFrac distances (unweighted) showing significant 
differences between controls and each dry eye group (SDE and NDE). Compositional differences between SDE and NDE are not significant. c 
Unweighted-Unifrac Principal co-ordinate analysis (pCoA) at the OTU level showing the distribution of healthy controls and cases grouped by the 
presence or absence of a comorbid autoimmune disease. Individuals with dry eye and no comorbid autoimmune disease (CAD) (circled) cluster 
distinctly compared to controls. The separation in groups suggest that microbial changes are driven by dry eye and not co-morbid autoimmune 
disease. d Pairwise PERMANOVA on the UniFrac distances (unweighted) showing significant differences between controls and both the presence 
and absence of a CAD. e Major microbial components within controls, NDE, and SDE driving the significance above. Genera are italicized and upper 
hierarchical groups are labeled
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dissociation of coalesced clusters in cases compared to 
controls. These differences were more pronounced in the 
SDE group as compared to controls. These findings are 
indicative of an increase in relative abundance of distinct 
classes/genera of bacteria in both case groups (Fig.  2d). 
Differences in the population characteristics were even 
more evident when we did a reference-independent 
deconvolution of bacterial sequences as shown in Fig. 4b 
[17]. In controls, there was an amorphous distribution of 
sequences with 10 distinct major clusters, several minor 

clusters and numerous un-clustered sequences in the 
middle. This pattern differed dramatically in the case 
groups. In NDE, there was a major rearrangement of the 
sequences into major clusters, with a reduction in minor 
and un-clustered sequences. This pattern differed further 
in the SDE group, where more similar sequences rear-
ranged into increased numbers of major clusters, at the 
expense of minor and un-clustered sequences.

Faith’s PD (kruskal-wallis test, pairwise)

Group 1 Group 2 H p-value q-value

SDE Control 6.785 0.009 0.027

SDE NDE 0.188 0.663 0.663

Control NDE 3.438 0.063 0.095
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 (n=21)
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 (n=13)

Shannon Index (kruskal-wallis test, pairwise)

Group 1 Group 2 H p-value q-value

Absent CAD Control 1.637 0.200 0.301

Absent CAD Present CAD 0.332 0.562 0.890

Control Present CAD 2.454 0.117 0.301

Group 1 Group 2 H p-value q-value

Absent CAD Control 9.596 0.002 0.006

Absent CAD Present CAD 2.454 0.117 0.175

Control Present CAD 1.070 0.301 0.301

SDE 
(n=13)

Control 
 (n=21)

NDE 
(n=8)

Faith’s PD (kruskal-wallis test, pairwise)

Fig. 3 Microbial diversity between controls and dry eye cases, split into those who met full Sjögren’s-criteria (SDE) and those who did not (NDE) (a, 
b) and alternatively, classified based on the presence or absence of a comorbid autoimmune disease (CAD) (c, d). Among other α-diversity matrices 
shown in Table 3, two of the major indices Shannon’s H and Faith’s PD are displayed in the figure. For both parameters, Shannon’s diversity did not 
show any differences between the groups. Faith’s PD index showed significant differences between controls and SDE, and also between controls 
and the absence of a comorbid autoimmune disease
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Bacterial association networks significantly change 
in cases compared to controls
Bacterial association was calculated using Markov Clus-
tering Algorithm (MCL), which calculates correlations 
of vector abundance of OTUs within each group. This 
results in clustering of OTUs that are most likely to co-
occur in a network, using correlation values as the dis-
tance matrix. For example, the higher the correlation 
value between 2 OTUs, the more likelihood that they 
would associate within a cluster. This also allows for each 
OTU to participate in multiple clusters. As shown in 
Fig. 5, control OTUs exhibited a single large super-cluster 
composed of 3 major clusters and several minor inde-
pendent clusters. In NDE, major constraints were intro-
duced into the network structure with the emergence 
of more clusters within the major super-cluster. In SDE, 
these constraints seemed to be exacerbated, as the super-
cluster stretched and expanded and new independent 
clusters emerged. A comparison of the major clusters in 
control group to NDE showed a major rearrangement of 
bacterial association within its major clusters (Additional 
file  1: Figure  S2 for controls, Additional file  1: Figure 

S3 for NDE and Additional file 1: Figure S4 for the SDE 
group). This included the increase in numbers of clus-
ters, accompanied by addition of phyla representation in 
major clusters. Furthermore, within each phylum, it was 
evident that the genera representation differed compared 
to controls (e.g. expanded representation of the genus 
Prevotella in NDE clusters and the phylum Actinobacte-
ria having different genera in each of the three groups). 
As evident from Fig.  5, SDE clusters have increased in 
numbers with major clusters composed of more diverse 
phyla with disparate genera representation.

Dry eye parameters are associated with several bacterial 
classes
Finally, we evaluated the relationship between DE param-
eters and bacterial classes in the two case groups. As 
shown in Table  2, several bacterial classes exhibited an 
association to symptoms (DEQ 5, OSDI) and signs (ocu-
lar surface inflammation, corneal staining, tear produc-
tion), when adjusting for age, gender, ethnicity and race 
in a multivariable model (Table 2). 
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Fig. 4 Dimensionality reduction of microbiome data and differential clustering within the three dry eye study groups. a t-Distributed Stochastic 
Embedding (t-SNE) implemented on group-wise OTU matrix demonstrate that control OTUs show a definite pattern of clustering that differs 
from those who met full Sjögren’s criteria (SDE) and those who did not (NDE). b Reference-independent deconvolution of bacterial sequences 
demonstrate distinct differences between SDE and NDE in terms of clustering and distribution of individual sequences. These differences are 
dramatic compared to Controls
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Discussion
We demonstrated that individuals with dry eye, both 
those that met full Sjögren’s criteria (SDE) and those 
that did not (NDE), had gut microbiome alterations 
compared to controls. In our study, we found that cases 
had more diverse phyla with disparate genera represen-
tation compared to controls. These changes were found 
not to be driven by age or by the presence of a comor-
bid autoimmune disease. The microbial changes within 
Controls, NDE, and SDE included a decrease in genera 
Faecalibacterium and Viellonella, classes Ruminococ-
caceae and Lachnospiraceae, and orders Clostridiales 
and Bacteroides, and an increase in the genera Megas-
phaera, Parabacteroides and Prevotella from controls 
to NDE, and then from NDE to SDE. Similar changes in 
microbial association and networks have been shown to 
alter virulence and metabolic behavior of microbes in 
other disease models [25–27] and hence, assumes added 
importance in the role of host-microbiota interactions in 
health and disease. In addition, we expanded our explo-
ration of composition beyond diversity to evaluate clus-
tering patterns in disease, noting differences between 
controls, NDE and SDE with respect to pattern and clus-
tering due to relative perturbations in bacterial popula-
tions. These changes in community behavior align with 
biological context, which demonstrate that composi-
tional changes in microbiota due to disease is not a sin-
gular change. Changes in relative abundance of microbial 
species results in the imposition of constraints on co-
occurrence network(s), resulting in induction/expulsion 
of other species, or complete rearrangement of networks 
[6]. We also found that several bacterial classes corre-
lated with DE symptoms and signs, suggesting that the 
gut microbiome may impact disease severity (indirectly 
assessed via severity of DE metrics).
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Fig. 5 Markov Clustering algorithm and bacterial associations within 
the three study groups. As shown, control OTUs exhibit a single 
large super-cluster composed of 3 major clusters and several minor 
independent clusters. In comparison, in those who do not meet full 
Sjögren’s criteria (NDE), major constraints have been introduced into 
the network structure with the emergence of more clusters within 
the major super-cluster. In those who met full Sjögren’s criteria (SDE), 
these constraints seemed to be exacerbated, as the super-cluster 
stretched and expanded and new independent clusters emerged. 
Identities of the microbes comprising each cluster within the three 
groups is given in Supplementary sheet 1

◂



Page 8 of 13Mendez et al. Microb Cell Fact           (2020) 19:90 

Our findings demonstrate both similarities and differ-
ences compared to prior data in Sjögren’s. In a study of 
10 individuals with Sjögren’s, greater relative abundances 
of Pseudobutyrivibrio, Escherichia/Shigella, Blautia and 

Streptococcus and lower abundances of Bacteroides, Para-
bacteroides, Faecalibacterium and Prevotella were noted 
compared to 45 healthy controls identified from the 
Human Microbiome Project [10]. Similar to our popu-
lation, controls were significantly younger than cases 
(27 ± 5 years old vs 59 ± 14 years old). A common finding in 
both studies was the presence of dysbiosis in Sjögren’s com-
pared to controls, albeit with differences in bacterial signa-
tures. Both studies noted a decrease in relative abundance 
of Faecalibacterium and Bacteroides in Sjögren’s, but in our 
study, we saw an increase in relative abundance of Prevo-
tella, a bacteria implicated in rheumatoid arthritis [28, 29]. 
Another difference was in phylogenetic diversity, in which 
we found increased diversity in individuals with Sjögren’s 
compared to controls whereas the former study found a 
significant inverse correlation between diversity and dis-
ease severity (r = − 0.72, p = 0.01). Several differences must 
be considered when interpreting results between the two 
studies including differences in hypervariable region tar-
gets (V1–3 vs V4–5), curation status (2016 vs 2018) confi-
dence interval (CI) of OTU database (97% vs 99%), controls 
(Human Microbiome Projects vs OpenBiome Stool Bank), 

Table 2 Multivariate analysis between clinical signs and gut microbial classes

DEQ5 dry eye questionnaire 5, OSDI ocular surface disease Index, RA Rheumatoid arthritis, IBD inflammatory bowel disease, SLE systemic Lupus Erythematosus
† Multivariable analysis considered the effects of demographics (age, gender, race, ethnicity). Dry eye signs not listed in table (e.g. tear break up time) did not exhibit 
significant associations with gut microbial classes, when considering demographics

*For all dry eye signs, value from more severely affected eye used in the analysis

Dry eye signs Class p† Comparison with the literature

DEQ5 Methanobacteriaceae < 0.01 ↑ in RA and ulcerative Colitis [18]

Bifidobacteriaceae < 0.01

Eggerthellaceae 0.012 ↓ in myasthenia gravis [19]

Flavobacteriaceae < 0.01 ↓ in myasthenia gravis [19]

Eubacteriaceae <0.01 ↑ in type 1 diabetes [20]

Peptococcaceae < 0.01 ↓ in SLE [21]

Ruminococcaceae < 0.01 ↓ in IBD and psoriasis [22]

Erysipelotrichaceae < 0.01

Leptotrichiaceae < 0.01

Synergistaceae < 0.01

MMPWorse Porphyromonadaceae 0.042 ↑ in ankylosing spondylitis [23]

Acidaminococcaceae < 0.01

OSDI Rikenellaceae 0.046 ↑ in ankylosing spondylitis [23]

Schirmer Elusimicrobiaceae < 0.01

Carnobacteriaceae < 0.01

Clostridiaceae < 0.01 ↑ in SLE

Clostridia Family XI < 0.01 ↑ in RA and IBD-arthritis [24]

Clostridia Family XIII < 0.01

Fusobacteriaceae < 0.01 ↑ IBD [21]

Leptotrichiaceae < 0.01

Akkermansiaceae < 0.01

Stainworse Methanomassiliicoccaceae 0.028

Pasteurellaceae < 0.01 ↑ in myasthenia gravis [19]

Table 3 Comparison between subjects with SDE vs NDE

SDE individuals who met full Sjögren’s criteria, NDE individuals who did not meet 
full Sjögren’s criteria, OTU operational taxonomy unit, SD standard deviation

Diversity indices/
Phylum/ratio

SDE
Mean ± SD

NDE
Mean ± SD

p-value

Chao1 diversity 116 ± 30 118 ± 35 0.88

Faith’s phylogenetic diversity 57.5 ± 10.7 60.7 ± 11.2 0.52

Shannon’s index 4.7 ± 0.64 4.9 ± 0.68 0.67

Observed OTU 891 ± 186 954 ± 155 0.44

Simpson diversity 0.076 ± 0.04 0.073 ± 0.04 0.90

Actinobacter 71 ± 70 45 ± 36 0.28

Bacteroides 332 ± 230 577 ± 744 0.39

Firmicutes 3502 ± 1898 4736 ± 1184 0.12

Proteobacteria 3.8 ± 10.0 1.3 ± 1.8 0.50

Firmicutes/Bacteroides 27 ± 58 30 ± 38 0.92
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geographical location (Texas vs Florida), and indices used 
(absolute OTU counts vs Faith’s PD). As a demonstration 
of how these differences can effect results, when we reana-
lyzed our data using the SILVA (v123) 97% CI database, the 
slight but significant increase in Faith’s PD in SDE vs con-
trols was lost (Additional file  1: Figure  S1). As Faith’s PD 
is a measure of number of nodes in a phylogenetic tree, it 
is understandable that values would change with a lower 
number of hits.

Our findings mirror changes noted in other autoim-
mune conditions, including ones related to Sjögren’s. 
Similar to our data, increased abundance of Act-
inobacteria [30], specifically Eggerthella and Actino-
myces, Prevotella copri [28], Lactobacillus [31], and 
decreased abundance of Faecalibacterium [30], Bacte-
roides [8], Lachnospiraceae [28], and Clostridiales [28] 
were reported in individuals with rheumatoid arthritis 
as compared to controls. Interestingly, some of these 
dysbiotic signatures normalized with anti-inflamma-
tory therapy [32]. In a similar manner, Viellonella was 
reduced in ankylosing spondylitis [33], Ruminococ-
caceae was reduced in inflammatory bowel disease 
and psoriasis [26], and Megasphaera was increased in 
primary biliary cirrhosis [34], all mirroring our find-
ings in Sjögren’s. Beyond composition and not tested 
herein, bacterial metabolites of individuals with auto-
immune disease has been found to differ from controls. 
For example, individuals with Behçet’s had less butyrate 
production in their gut compared to controls [9]. A 
similar finding was indirectly noted in Sjögren’s with a 
50% decrease in relative abundance of OTUs classified 
to the high butyrate producer Faecalibacterium praus-
nitzii compared to controls [10].

These dysbiotic signatures may have a causal role 
in SDE. Inflammation is a hallmark of DE in individu-
als with and without Sjögren’s [35, 36], and it is well-
established that the gut microbiome has an impact 
on inflammation and immunity [6, 11–14]. The com-
mensal gut microbiome monitors mucosal immunity 
through the generation of anti-inflammatory regula-
tory T cells (Treg cells) and pro-inflammatory Th17 
cells. The balance between these cells protects the 
mucosa from pathogenic microorganisms and limits 
excessive T cell responses via key mediators, includ-
ing TGF-B, IL-6, retinoic acid and SCFA. For example, 
specific Clostridia species have been found to specifi-
cally induce Th17 cells in the small intestine and in 
extraintestinal sites during autoimmune inflammation. 
Other Clostridia clusters have been shown to induce 
Tregs and produce SCFAs to support Treg develop-
ment [37]. In a similar manner, Bacteroides species 
can express polysaccharide A which suppresses Th17 
inflammatory responses, allowing mucosal tolerance 

and subsequent colonization [37]. Putting this in con-
text of our findings, reductions in commensals such as 
Clostridiales and Bacteroides may have an impact on 
the balance of Th17 and Treg cells, tipping the body 
towards autoimmunity.

Specific to the eye, altering the intestinal microbiome 
has been shown to influence eye disease. For example, 
CD25 knock out (KO) mice spontaneously develop DE 
and thus serve as a model of SDE. Germ-free CD25KO 
mice had a worse DE phenotype compared to CD25KO 
control mice, including increased lacrimal gland inflam-
mation and IFN-ϫ producing T cells. Interestingly, 
recolonization of the gut microbiome improved the DE 
phenotype, with decreased lacrimal gland inflammation, 
IFN-ϫ producing T cells and corneal staining [38]. Simi-
lar findings have been seen in other mice models. Desic-
cating stress applied to the ocular surface with a fan in 
germ-free mice led to corneal staining and ocular sur-
face inflammation, resulting in a worse DE phenotype 
compared to conventionally house mice [39]. In another 
experiment, antibiotics administered in addition to des-
iccating stress reduced Bacteroidetes and Firmicutes and 
increased Proteobacteria in the gut and concomitantly 
caused a more severe DE phenotype compared to desic-
cating stress alone [40]. These experiments reinforce the 
idea of a gut-eye axis and highlight the possibility of gut 
microbiome modulation and a therapeutic approach in 
DE.

Our findings should be interpreted bearing in mind our 
study limitations, which included a small, heterogenous 
population. The rationale for including both individuals 
who met full Sjögren’s criteria and who did not is that 
Sjögren’s is often diagnosed late in the disease course as 
the traditional markers, SSA and SSB, become positive 
years after disease initiation, if at all [41]. As such, many 
individuals with DE that have a specific profile (aqueous 
tear deficiency, early marker positivity, DE in the setting 
of an established autoimmune disease such as rheuma-
toid arthritis) are considered as having Sjögren’s-like DE 
but do not fit the ACR criteria for disease. In this study, 
we were interested in understanding gut microbiome 
profiles in both groups, although we acknowledge that 
the NDE group likely has a more heterogeneous makeup. 
Fortunately, as evident from our PCA plot, data from 
our diverse patient population is driven into a tight clus-
ter, suggesting significant disease-mediated microbial 
changes in both groups, compared to controls. However, 
findings from our study will need to be replicated and 
expanded in larger populations. In addition, we chose 
controls provided by a stool bank (Openbiome) so as to 
compare our population to a well-phenotyped, healthy 
control group, which differed significantly in age and 
varied in gender. An issue with contemporary controls 
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(e.g. age-matched veterans) is that other co-morbidities 
may affect microbiome health. As such, we modeled our 
work on prior studies, in which a similar approach also 
resulted in an age difference between cases to controls 
[10]. While age related differences in the gut microbiome 
have been noted when comparing very young children to 
adults, it seems that microbiome stabilizes to an adult-
like composition by age 5 [42, 43]. Another limitation is 
that diet and consumption of probiotics were not con-
sidered in our evaluation, which may affect the composi-
tion of individuals’ gut microbiome [44]. In addition, 16s 
rRNA sequencing method has limited genera coverage, 
which limits a detailed study of the microbiome. Finally, 
our study did not measure metabolic products of bac-
teria, such as butyrate, which would be indicative of the 
function of the microbiome.

Despite these limitations, our study findings are impor-
tant as they set the foundation for modulating the gut 
microbiome as a potential therapeutic approach in DE. 
There are several ways to modulate the gut microbiome, 
including dietary intake, probiotics and fecal microbial 
transplantation (FMT). For example, FMT was used to 
modulate the gut microbiome in Graft Versus Host Dis-
ease (GVHD), another condition associated with DE. In 
four individuals with GVHD, FMT increased abundances 
of the beneficial bacteria Lactobacillus, Bacteroides, Bifi-
dobacterium and Faecalibacterium, and concomitantly 
improved gastrointestinal symptoms such as defeca-
tion consistency and frequency [45]. Future studies are 
needed to translate these findings to Sjögren’s-associated 
DE.

Conclusion
The gut microbiome is altered in dry eye, and there are 
specific bacterial classes associated with dry eye signs 
and symptoms. This study sets the foundation for gut 
microbiome modulation as a potential therapeutic target 
for dry eye.

Methods
Study population
Individuals seen between November 2017 and Febru-
ary 2018 at the Miami Veterans Affairs (VA) Hospital or 
Bascom Palmer Eye Institute with dry eye were invited to 
participate. Individuals were split into two categories: (1) 
those who fulfilled the 2016 American College of Rheu-
matology criteria for Sjögren’s, having a total weighted-
score of ≥ 4 from the sum of the following: (1) anti-SSA/
Ro antibody positivity and focal lymphocytic sialadenitis 
with a focus score of ≥ 1 foci/4 mm2, each scoring 3; (2) 
an abnormal ocular staining score of ≥ 5, a Schirmer’s 
test result of ≤ 5  mm/5  min, and an unstimulated sali-
vary flow rate of ≤ 0.1  ml/minute, each scoring 1 [46] 

and (2) those with dry eye (DE) symptoms and features 
of Sjögren’s but whom did not meet full criteria. This 
included individuals with (1) ≥ 1 early Sjögren’s marker 
positivity [47]; (2) aqueous tear deficiency (ATD) defined 
as Schirmer score with anesthesia ≤ 5 mm in either eye; 
or (3) an autoimmune disease (e.g. rheumatoid arthritis). 
We first combined the two groups and then examined 
each group individually as compared to controls. Given 
the concern that systemic autoimmune disease may affect 
the composition of the gut microbiome, in a secondary 
analysis, we split cases into two groups based on the pres-
ence or absence of a comorbid autoimmune disease (e.g. 
rheumatoid arthritis).

Ethical approval
The Miami VA and University of Miami Institutional 
Review Boards (IRB) approved the prospective evalua-
tion of patients. Informed consent was obtained from 
all subjects and the study was adherent with the princi-
ples of the Declaration of Helsinki. The IRB number was 
20170733.

Clinical metrics
Demographic information for each participant was col-
lected including age, gender, race, ethnicity, past ocular 
and medical history and current medications.

DE symptoms
Participants completed two standardized DE symptom 
questionnaires: the Dry Eye Questionnaire 5 (DEQ  5) 
[48] (score 0–22) and the Ocular Surface Disease Index 
(OSDI) [49] (score 0–100).

DE signs
Participants underwent a complete ocular surface exam 
of both eyes in the following order:

(1) Ocular surface inflammation via matrix metallo-
proteinase (MMP) 9 levels (Inflammadry, Quantel, 
San Diego, CA) [50] graded based on the inten-
sity of the pink line (0 = no line, 1 = faint pink line, 
2 = pink line, 3 = intense pink line).

(2) Tear breakup time (TBUT) using fluorescein stain 
measured three times in each eye and averaged.

(3) Corneal staining using fluorescein stain evaluated 
using the National Eye Institute (NEI) scoring scale 
which assesses 5 areas of the cornea on a 0–3 scale 
with a total score generated by summing the 5 sec-
tion scores [51].

(4) Basal tear production after anesthesia placement 
(measured in mm at 5 min) using Schirmer’s strips.
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(5) Meibum quality evaluated after expression with 
intermediate pressure applied to the lower eyelid 
(0 = clear; 1 = cloudy; 2 = granular; 3 = toothpaste; 
4 = no meibum extracted).

Stool collection and analysis
All subjects were given a stool collection kit for at home 
collection. Stool samples were collected and placed in a 
glycerol suspension, homogenized, and sent to Open-
Biome (Cambridge, MA). Specimens were then frozen 
at − 80  °C until analysis. Total DNA was isolated using 
Power-soil/fecal DNA isolation kit (Mo-Bio, German-
town, MD) as per manufacturer’s specifications. All sam-
ples were quantified using the  Qubit® Quant-iT dsDNA 
Broad- Range Kit (Life Technologies, Grand Island, NY) 
to ensure that they met minimum concentration and 
mass of DNA [52]. To enrich the sample for the bacterial 
16S V4 rDNA region, DNA was amplified using fusion 
primers designed against the surrounding conserved 
regions that are tailed with sequences to incorporate flow 
cell adapters and indexing barcodes (Illumina, San Diego, 
CA). Each sample was PCR amplified with two differ-
ently barcoded V4–V5 fusion primers and were advanced 
for pooling and sequencing. For each sample, amplified 
products were concentrated using a solid-phase revers-
ible immobilization method for the purification of PCR 
products and quantified by electrophoresis using an 
(Agilent, Santa Clara, CA) 2100 Bioanalyzer. The pooled 
16S V4V5-enriched, amplified, barcoded samples were 
loaded into the MiSeq cartridge (Illumina Inc, San Diego, 
CA), and then onto the instrument along with the flow 
cell. After cluster formation on the MiSeq Instrument 
(Illumina, San Diego, CA), the amplicons were sequenced 
for 250 cycles with custom primers designed for paired-
end sequencing.

In addition to patient samples, reagent controls were 
supplied in triplicate as background. Samples produc-
ing amplicons at later cycles compared to majority of 
samples were concentrated using Agencourt AMPureXP 
beads (Beckman Coulter, Indianapolis, IN). All samples 
were sequenced together after barcode-normalization 
subsequent to a preliminary sequencing run.

Using QIIME 2.0 [53], sequences were quality filtered 
and de-multiplexed using exact matches to the supplied 
DNA barcodes and primers. Resulting sequences were 
then searched against the SILVA database (v123) and 
clustered at 99% to obtain phylogenetic identities.

Statistical analysis
OTU tables were rarefied to the sample containing the 
lowest number of sequences in each analysis. QIIME 2.0 
was used to calculate alpha diversity and to summarize 

taxa [53]. Descriptive statistics were used to describe rel-
ative compositions of bacteria on phyla, genera and class 
levels. Data were analyzed for significance (p ≤ 0.05) by 2 
tailed student t and Mann–Whitney U tests (GraphPad 
Prism 8).

Principal coordinate analysis
UNIFrac principal coordinate analysis (PCA) was per-
formed using observation ID (OTU) level. The PER-
MANOVA test was utilized to find significant whole 
microbiome differences among discrete categorical or 
continuous variables with randomization/Monte Carlo 
permutation test (with Bonferroni correction). The frac-
tion of permutations with greater distinction among 
categories (larger cross-category differences) than that 
observed with the non-permuted data was reported as 
the p-value. False discovery rate (FDR) corrected p-value 
(q-value) < 0.05 was considered significant across groups.

Comparison of diversity indices
α-diversity matrices were compared between groups 
using Kruskal–Wallis pairwise rank tests or its variant, 
the Mann–Whitney U test.

Dimensionality reduction and bacterial association 
analysis
We utilized both sequence-based and OTU-matrix 
dimensionality reduction and clustering algorithms. 
Compared to Qiime-derived PCA, which is done sam-
ple-wise, these algorithms are identity agnostic and 
decipher qualitative association (and disassociations) 
between experimental groups. The following methods 
were used:

a. t-SNE (t-Distributed Stochastic Embedding): t-SNE 
algorithm was implemented using group-wise OTU 
matrix with SeqGeq 1.5.0 software (FloJo LLC, Ash-
land, OR). t-SNE plots were generated with a per-
plexity value of 30 and 1000 iterations.

b. Reference-independent binning: This algorithm per-
forms a reference-independent deconvolution of 
metagenomic sequences to reduce non-linear dimen-
sionality of the samples. We used the java implemen-
tation of VizBin for this analysis [17]. We used a min-
imum contig length of 200 bases, k-mer length of 5, 
perplexity 30 with 1000 iterations for this study. Both 
individual samples and concatenated groups were 
analyzed.

c. Bacterial association and clustering: We used 
Graphia software (Edinburgh, UK) and its implemen-
tation of Markov Clustering algorithm (MCL) [54]. 
Using our group-wise OTU matrix, MCL looked 
for cluster structures using mathematical bootstrap-
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ping. While this method is still agnostic to phyloge-
netic hierarchy in the matrix, we used the hierarchy 
as identifying markers to understand the bacterial 
clusters and changes in those clusters within the 3 
study groups. MCL used the stochastic flow of the 
matrix to decipher the distances between the OTUs 
at equilibrium, thereby generating a cluster map by 
using correlation scores as distance. For generating 
the cluster, nodes scoring above a Pearson correlation 
value of 0.85 were used.

Correlations between bacterial classes and clinical 
measures
Multivariable linear regression analyses were per-
formed to evaluate associations between bacteria 
classes and DE measures, considering demographics 
(age, gender, race, and ethnicity) in the model.
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