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Abstract 

Background: In the last decade, increasing evidence has shown that changes in human gut microbiota are asso‑
ciated with diseases, such as obesity. The excreted/secreted proteins (secretome) of the gut microbiota affect the 
microbial composition, altering its colonization and persistence. Furthermore, it influences microbiota‑host interac‑
tions by triggering inflammatory reactions and modulating the host’s immune response. The metatranscriptome is 
essential to elucidate which genes are expressed under diseases. In this regard, little is known about the expressed 
secretome in the microbiome. Here, we use a metatranscriptomic approach to delineate the secretome of the gut 
microbiome of Mexican children with normal weight (NW) obesity (O) and obesity with metabolic syndrome (OMS). 
Additionally, we performed the 16S rRNA profiling of the gut microbiota.

Results: Out of the 115,712 metatranscriptome genes that codified for proteins, 30,024 (26%) were predicted to be 
secreted, constituting the Secrebiome of the gut microbiome. The 16S profiling confirmed an increased abundance in 
Firmicutes and decreased in Bacteroidetes in the obesity groups, and a significantly higher richness and diversity than 
the normal weight group. We found novel biomarkers for obesity with metabolic syndrome such as increased Corio‑
bacteraceae, Collinsela, and Collinsella aerofaciens; Erysipelotrichaceae, Catenibacterium and Catenibacterium sp., and 
decreased Parabacteroides distasonis, which correlated with clinical and anthropometric parameters associated to 
obesity and metabolic syndrome. Related to the Secrebiome, 16 genes, homologous to F. prausniitzi, were overex‑
pressed for the obese and 15 genes homologous to Bacteroides, were overexpressed in the obesity with metabolic 
syndrome. Furthermore, a significant enrichment of CAZy enzymes was found in the Secrebiome. Additionally, signifi‑
cant differences in the antigenic density of the Secrebiome were found between normal weight and obesity groups.

Conclusions: These findings show, for the first time, the role of the Secrebiome in the functional human‑microbiota 
interaction. Our results highlight the importance of metatranscriptomics to provide novel information about the 
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Background
The gut is an essential metabolic, endocrine, and immune 
organ inhabited by millions of microbes. Recently,  our 
knowledge of the diversity of microorganisms in the 
human gut has exponentially increased with the devel-
opment of high-throughput sequencing technologies [1]. 
The intestinal microorganism community (gut micro-
biota) is a dynamic ecosystem with critical functional 
roles in the development and physiology of its host, 
preventing the growth of pathogenic bacteria, modu-
lating the immune response, affecting nutrient absorp-
tion, regulating metabolic processes, etc [1]. Meanwhile, 
the host’s intestinal microenvironment also impacts the 
structure and function of the microorganisms which 
inhabit it [2, 3]. Although metagenomic approaches pro-
vide information on the microbiota composition and the 
potential functions of the codified genes, the expression 
profile of the community is needed to know what genes 
are expressed under certain conditions [4, 5].

High-throughput sequencing of RNA transcripts 
(RNA-seq) from microbial communities (metatran-
scriptome) allows an unprecedented opportunity to 
analyze the functional and taxonomical dynamics of the 
expressed microbiome, which can be associated with 
human health and disease [1]. The microbial encoded 
genes are not directly correlated with their transcrip-
tion; up to 41% of microbial transcripts in the human 
gut have different relative abundances as compared to 
their genome content [4]. Metatranscriptome analysis 
has been applied to the human gut microbiota, revealing 
changes on the microbial community gene-expression 
profile during the exposure to dietary [6] and xenobi-
otic interventions [7] or with the presence of inflamma-
tory diseases [8], showing divergent expression profiles of 
microbial community (subject-specific expression) [9], as 
well as a core of expressed functions [10, 11]. Recently, 
a metatranscriptomic ‘core’ universally transcribed over 
time and across participants, often by different micro-
organisms, has been identified [3]. Thus, metatranscrip-
tomics emerges as a highly informative approach to 
analyze the expressed functional dynamics of microbial 
communities that can be associated with the presence of 
diseases [1].

The secretome is defined as the complete set of 
Excreted/Secreted (ES) proteins of a cell [12]. These pro-
teins play a critical role in biological processes impor-
tant for gut colonization, persistence, interaction with 
mucosal cells, activating signaling pathways, contribut-
ing to probiotic effects, etc. In pathogenic bacteria, the 
secretome plays a crucial role in parasitism, modulating 
the host immune response and promoting the prolifera-
tion of infection [13–15]. Millions of years of co-evolu-
tion between the human host and its gut microbial 
community have resulted in a continuous dialogue of the 
microbiota with the immune system promoting the gut 
homeostasis. Thus, the collection of secreted proteins 
represents proteins released by the microbiota into the 
intestinal lumen for bacteria-bacteria and bacteria-host 
interactions regulating the interaction within the gut. 
However, current knowledge of the molecular mecha-
nisms responsible for the cross-talk between the  gut 
microbiota and the human host remains incomplete.

There are several examples of the role that ES pro-
teins from the microbiota play in the gut’s health. Bile 
salt hydrolases of lactobacilli reduce blood cholesterol 
and diminish the risk for cardiovascular diseases [16, 
17], and show activity against intestinal protozoan para-
sites [18]. Other enzymes such as N-acylated homoser-
ine lactone (AHL)-lactonase help modulate the structure 
of the microbiota by decreasing the quorum-sensing 
of pathogenic bacteria [19]. Several secreted proteins act 
as essential mediators for the establishment of a bifido-
bacteria-host immune system dialogue [20]. However, no 
study has been conducted to examine the total secretome 
of the gut microbiota, and most importantly, what is the 
expressed secretome codified in the metatranscriptome 
of the human gut microbiome. Thus, the primary goal of 
this study was to determine the expressed secretome of 
the human gut microbiome associated with childhood 
obesity.

An essential step for the energy harvesting  by the 
microbiota involves the carbohydrate degradation from 
food. Microbial  enzymes conduct the breakdown of the 
diet’s complex oligosaccharides into fermentable mono-
saccharides and their posterior transformation into 
components that can be absorbed by the intestinal cells 
and  the microbiota [21]. Given that the human genome 

gut microbiome’s functions that could help us understand the impact of the Secrebiome on the homeostasis of its 
human host. Furthermore, the metatranscriptome and 16S profiling confirmed the importance of treating obesity and 
obesity with metabolic syndrome as separate conditions to better understand the interplay between microbiome 
and disease.

Keywords: Secrebiome, Microbiota, Microbiome, Obesity, Metabolic syndrome, Metatranscriptome, 
Metatranscriptomics, AAR , CAZY, Secretome
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lacks the enzymes required to cleave the glycosidic bonds 
of the complex dietary polysaccharides [22], this  pro-
cess is mainly performed by three types of Carbohydrate 
active  enzymes (CAZymes) enzymes: the Carbohydrate 
Esterases (CEs), Glycoside Hydrolases (GH), and Poly-
saccharide Lyases (PL). CAZymes plays an essential role 
in determining the nutritional status of individuals. The 
carbohydrate degradation resulting from the bacterial 
fermentation of fiber-rich diets constitutes the first step 
in the production of short-chain fatty acids (SCFAs), 
essential molecules generally associated with multiple 
health-promoting and beneficial metabolic effects for the 
host. However, the increased energy harvest derived by 
this process has also been proposed to contribute to diet-
induced obesity in mice [23].

Here, we report a deeply sequenced metatranscrip-
tome study of human gut microbiome samples to eluci-
date the functional profile of the Secrebiome. We carried 
out a high throughput shotgun sequencing of the total 
RNA and a profiling of the 16S rRNA gene using the V4 
region as a marker for the phylogenetic diversity of the 
expressed bacterial community. Then, we constructed a 
de novo metatranscriptome to assess the total bacterial 
genes expressed and secreted that are present in the dif-
ferent groups. Using high-throughput sequencing, we 
determined for the first time, that ~ 26% of the total genes 
expressed in the metatranscriptome corresponded 
to  potentially secreted  proteins, which may serve as a 
critical mechanism to regulate the structure–function of 
the microbiome and their relationship with the host. Fur-
thermore, 31 of these genes were differentially expressed 
in the obese (O) and obese with metabolic syndrome 
(OMS) groups. We also observed some novel correlations 
between differentially abundant taxa and the clinical and 
anthropometric parameters of the children cohort. When 
characterizing the Secrebiome, we observed an elevated 
enzymatic activity, mostly from hydrolases and trans-
ferases, which suggests the critical role that these pro-
teins have in the metabolism of nutrients present in the 
host system.

Results
Different microbiota structures were found in normal 
weight and obesity groups
The study population of this work consisted of 27 chil-
dren, classified as follows: 7 normal weight (NW), 10 
with obesity (O), and 10 with obesity and metabolic syn-
drome (OMS) selected from a cohort of 750 children 
around 9 years of age. From the cohort, 333 samples were 
collected for RNA extraction, where 65% had normal 
weight, and the remaining 35% were obese. Importantly, 
52.94% of obese children also had metabolic syndrome. 
Anthropometric and biochemical characteristics of the 

population are shown in Additional file 1: Table S1. Most 
of anthropometric and clinical parameters related to the 
obesity and obesity with metabolic syndrome were sta-
tistically different among the NW, O and OMS groups 
(Additional file 1: Table S1).

For the 16S profiling of the microbiota associated with 
the three groups, we sequenced the corresponding V4 
region amplicons of the 16S rRNA gene, and after the 
application of quality filters, we obtained 2,937,796 joined 
reads that were classified into 801 OTUs at 97% sequence 
identity. All samples successfully recovered most of 
the groups  variation, as seen in the rarefaction curve, 
which shows saturation of diversity at a sequence depth 
of 20,000 reads (Additional file 2: Fig. S1a, b). Regarding 
the associated taxonomy of all samples, the bulk of OTU 
abundance showed that the three groups are dominated 
by the same three phyla Firmicutes, Bacteroidetes, and 
Proteobacteria, accounting for 39%, 56%, and 3% of the 
total reads, respectively (Fig. 1a and Additional file 3: Fig. 
S2a–f). Firmicutes was markedly increased in the OMS 
(46.44%), and O (40.29%) as compared to the NW group 
(26.65%), although only the difference between NW 
and OMS was statistically significant (p = 0.0431). The 
opposite effect was observed with Bacteroidetes, which 
was increased in NW (66.88%) as compared to the O 
(55.27%) and OMS (45.48%), although only the difference 
between the NW and OMS was significant (p = 0.0249). 
Interestingly, the ratio of Firmicutes/Bacteroidetes was 
NW = 0.55, O = 0.92, and OMS = 1.20, with significance 
difference only between NW Vs OMS (p = 0.025). Fur-
thermore, both the OMS and O groups exhibited signifi-
cantly higher richness and diversity than the NW group, 
with the larger values in the OMS group (Fig. 1b, c). The 
between-sample diversity comparison carried out with 
a PCoA ordination based on unweighted UniFrac dis-
tances showed no defined clusters by group  (R2 = 0.066, 
p = 0.75), although the most disperse one was the OMS 
(based on the within-group variation), followed by the O 
and NW groups (Fig. 1d). The weighted distances showed 
the same behavior (Additional file 4: Fig. S3).

We found significant differences in the abundance of 
41 taxa at different taxonomic levels between the three 
groups (Fig. 2). The class Coriobacteria, order Coriobac-
teriales, family Coriobacteraceae, genus Collinsella and 
species Collinsella aerofaciens were significantly more 
abundant specifically in the OMS group (when compared 
against both the NW and O groups), thus suggesting 
them as potential biomarkers for obesity with metabolic 
syndrome. Likewise, the genus Porphyromonas and, 
more specifically, an undetermined species in the same 
genus were significantly more abundant specifically in 
the O group when compared against NW and OMS, sug-
gesting them as potential biomarkers for obesity.
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Regarding pairwise group statistical significant com-
parisons, the genus Phascolarctobacterium and one unde-
termined species within this genus were more prevalent 
in the NW as compared to O, while Bacteroidetes, Bacte-
roidia, and Bacteroidales were more abundant in the NW 
than in the OMS group (Fig. 2). The O group showed an 

over-abundance of bacteria from the Porphyromonas 
and Faecalibacterium genera, as well as Faecalibacte-
rium prausnitzii, Bifidobacterium adolescentis, and an 
undetermined species of Porphyromonas as compared 
to NW, while Parabacteroides distasonis was over-abun-
dant in the O than in the OMS (Fig. 2). The OMS group 

a b

dc

Fig. 1 Analysis of the 16S rRNA gene profiles. Each panel compares the NW, O, and OMS groups. a Mean Relative abundance of the phyla present 
in each group. b Mean observed OTUs per sample and group. The averaged total unique OTUs from 10,000 rarefactions per sample are shown 
as points with overlying boxplots showing the distribution within each group. c Mean Shannon’s entropy per sample and group. The averaged 
Shannon’s index value from 10,000 rarefactions per sample are shown as points with overlying boxplots showing the distribution within each 
group. d Principal coordinate analyses of Unweighted UniFrac distances. Elipses were calculated based on the most distant samples per group. 
Samples for which RNA‑seq information is available are presented with a larger font
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showed a larger number of differentially abundant taxa 
at different levels, with the class Erysipelotrochi, order 
Erysipelotrichales, family Erysipelotrichaceae, genus 
Catenibacterium and an undetermined Catenibacte-
rium species reported more over-abundant in the OMS 
group than in either the NW or O groups when consid-
ered separately (Fig. 2). Additionally, the OMS had over-
abundance of phyla Firmicutes and Proteobacteria; class 
Coriobacteriia, Bacilli, and Clostridia; order Coriobacte-
riales and Clostridiales; family Coriobacteriaceae, genera 
Colinssella, and Coprococcus; and species Colinsella aer-
ofaciens when compared to NW (Fig. 2).

Microbiota changes are associated with anthropometric 
and clinical parameters
We analyzed whether the 41 differentially abundant 
taxa were correlated with changes in the anthropomet-
ric and clinical parameters that are involved in obesity 
and metabolic syndrome (Additional file  5: Table  S2). 

Interestingly,  Collinsella aerofaciens  which was over-
abundant in OMS vs all groups, showed a significant pos-
itive correlation with triglycerides (r = 0.62, p = 0.00053) 
(Fig. 3a), while showing a negative correlation with HDL 
(r = − 0.4, p = 0.039) (Fig.  3b). Interestingly,  C. aerofa-
ciens  also showed a positive, albeit weak, correlation 
with waist circumference (r = 0.28, p = 0.16) and BMI 
(r = 0.34, p = 0.078). In the upper taxonomic levels, the 
genus Collinsella showed a positive significant correla-
tion with triglycerides (r = 0.64, p = 0.00029) (Fig.  3c), 
and BMI (r = 0.39, p = 0.044) (Fig.  3d), and a negative 
correlation with HDL (r = − 0.4, p = 0.036) (Fig. 3e), and 
a positive but weak correlation with waist circumference 
(r = 0.35, p = 0.073). The same behavior was observed 
with the corresponding family Coriobacteriaceae, order 
Coriobacteriales and class Coriobacteriia (Additional 
file  5: Table  S2). We also found positive correlations of 
tryglicerides and BMI with Clostridiales, Clostridia 
(Additional file 5: Table S2), and Firmicutes (Additional 

Fig. 2 Differentially abundant taxa in association with groups and their distribution in the samples. Bars show the effect size of taxa that are 
differentially more abundant in the specified groups after analysis with LEfSe. Those labeled as specific were found significantly more in their 
groups, whereas the rest are found in pairwise group comparisons. The heatmap shows the abundance of those taxa in the samples with more 
abundant taxa in yellow
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file 5: Table S2), which were more abundant in the OMS 
vs NW groups. Contrary, Bacteroidetes, Bacteroidia 
and Bacteroidales, which were over-abundant in NW 
when compared to OMS were negatively correlated 
with tryglicerides and BMI (Additional file 5: Table S2). 
In addition,  Faecalibacterium prausnitzii  (Fig.  3f ) and 
Faecalibacterium (Fig.  3g) showed a positive correla-
tion with BMI (r = 0.38, p = 0.048) while Bifidobacte-
rium adolescentis correlated positively with triglycerides 

(r = 0.74, p = 0.0000094) (Fig.  3h) and a negative but 
weak correlation with HDL (r = − 0.34, p = 0.082). Both 
species were significantly more abundant in O with 
respect to NW. Furthermore,  Parabacteroides dista-
sonis which was more abundant in O when compared to 
OMS showed a positive correlation with LDL (r = 0.58, 
p = 0.0023) (Fig.  3i). Importantly, we found a positive 
correlation with waist-circumference and taxa in differ-
ent levels, including Erysipelotrichi, Erysipelotrichales 

b

e

h

c

f

i
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d

g

Fig. 3 Linear regression and Pearson correlation of LEfSe biomarkers. The title of each graph corresponds to the LEfSe biomarkers taxa. The x‑axis 
shows the value of the clinical and anthropometrical parameters, and the y‑axis shows the relative abundance for each taxa
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and Erysipelotrichaceae, and Bacilli (Additional file  5: 
Table S2), which were more abundant in OMS pairwise 
comparisons against NW and O.

RNAseq resulted in a representative assembly 
of the metatranscriptome
To explore the expressed taxonomy and functions asso-
ciated with obesity and metabolic syndrome, we con-
ducted a metatranscriptomic analysis. To this end, we 
obtained and sequenced the total RNA of eight fecal 
samples (NW = 2, OB = 3, and OMS = 3). The integrity of 
the total RNA showed the dominance of the 16S/23S and 
18S/28S rRNA peaks (Additional file 6: Fig. S4). The sam-
ples were rRNA depleted and sequenced and after quality 

control and removal of sequencing artifacts, a total of 
172,444,756 million reads with an average read length of 
92 nt were obtained. After the removal of Eukaryotic and 
Prokaryotic ribosomal RNA and human transcripts, we 
obtained 110,014,240 RNA-seq reads, which were used 
for the de novo assembly of the metatranscriptome. Next, 
we obtained an assembly comprised of 224,427 contigs 
with an N50 of 702 bp and a total of 125,015,187 nucleo-
tides assembled (Additional file 7: Table S3). From these 
contigs, we obtained 115,712 open reading frames (ORF) 
containing a protein sequence. Notably, > 54% of the 
total reads from the eight samples mapped back to the 
assembly, suggesting that our assembly covers a broad 
fraction of the sequence spectrum for all the samples 

a

b

Fig. 4 Remapped sequences to the metatranscriptome and Secrebiome. a Proportion of reads remapped to the global metatranscriptome and 
b proportion of Secrebiome/metatranscriptome remapped by sample. The external samples were taken from BioProjects PRJNA354235 and 
PRJNA188481
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(Fig.  4a). In the same manner, the read mapping to our 
assembly was performed with metatranscriptomic sam-
ples collected from twenty-seven healthy adults from two 
independent studies (NCBI BioProjects PRJNA354235 
and PRJNA188481). Interestingly, > 25% of the reads 
mapped to our assembly (Fig.  4a), suggesting that our 
metatranscriptome also covered a good proportion of the 
sequence spectrum in adults, considering the known dif-
ferences of the microbiota composition among children 
and adults.

Determination of the Secrebiome
Proteins can be secreted by bacteria through multiple 
secretory mechanisms. Thus, we used a bioinformatic 
strategy [14, 15] to predict the secreted proteins encoded 
in our metatranscriptome. Out of the 115,712 genes that 
codify for proteins, we predicted 30,024 as potentially 
secreted, which represented ~ 26% of the total proteins in 
our metatranscriptome. All these proteins were referred 
to as the secretome of the microbiome, the “Secrebi-
ome”. Notably, this represents 31.10% of the expression 
of the total metatranscriptome. From the 30,024 secreted 
proteins, 96.57% showed significant similarity against 
homologs in the NCBI’s non-redundant protein data-
base (nr), 64.26% were assigned a Gene Ontology (GO) 
term, and 19.84% were assigned an Enzyme Commis-
sion (EC) number. The GO terms distribution showed 
that the Secrebiome was mainly composed of Hydrolase 
activity (18.4%) at Molecular Function (Additional file 8: 
Fig. S5a), membrane (37%) at Cellular Component (Addi-
tional file  8: Fig. S5b); and organic substance metabolic 
process (21%) at Biological process (Additional file 8: Fig. 
S5c). Finally, the EC classification showed that Hydro-
lases and Transferases were the most abundant terms 
with 47.5% and 23.4% of the EC sequences, respectively 
(Additional file  8: Fig. S5d). The GO and EC recruit-
ment plots showed a relatively complete collection of 
the total ontology and enzyme variability as most curves 
passed their inflection points after 10,000 observations 
in most samples (Additional file 9: Fig. S6a, b), suggest-
ing an adequate functional coverage of our samples to the 
Secrebiome.

Importantly, when we mapped the RNA-seq  reads of 
the eight samples to the Secrebiome > 18% of the reads 
that mapped to the total metatranscriptome, aligned back 
to the Secrebiome (Fig. 4b), suggesting that an important 
proportion of reads potentially represented secreted pro-
teins and thus may be in direct contact with the host. 
Notably, the reads from the two external published Bio-
Projects, mapped  back > 24% of the reads (Fig.  4b), sug-
gesting that approximately a quarter of the sequences 
in the metatranscriptome of adults, correspond to the 
expression of the Secrebiome. Interestingly, the read 

proportion that mapped to our samples is more variable 
than the percentage obtained for the studies on adults, 
suggesting that the Secrebiome in children is more vari-
able among individuals than in adults (Fig. 4b).

Differential expression of the Secrebiome among obesity 
groups
A comparison of the predicted abundance values 
(RSEM) of the Secrebiome transcripts from the obese 
groups resulted in the identification of 31 transcripts 
differentially expressed in either the O (16 transcripts) 
and OMS (15 transcripts) groups (Fig.  5). Because 
RNA-seq data was only available for two samples in the 
NW group and their contribution to the set was lim-
ited, this group was excluded from the DESeq differ-
ential expression analysis to avoid a detrimental effect 
in the internal normalization. Regardless, the resulting 
31 differentially expressed transcripts obtained for both 
the O and OMS groups were compared against an inde-
pendent normalization carried out separately with the 
NW group to compare their expression in this group 
and the obese groups. As seen in Fig. 5 and Additional 
file 10: Figure S7, the fold change of expression of the 31 
transcripts was mainly driven by a strong signal in the 
O and OMS groups, with a negligible impact from the 
NW group, suggesting that the comparison of the over-
expressed genes is associated to the obesity phenotype.

The transcript DN71185_c2_g1, was one of the most 
strongly associated with the O group. It was cross-ref-
erenced to a carbohydrate-binding module (CBM26), 
and its sequence was homologous to an alpha-amylase 
precursor. Further,  the taxonomy assigned to most of 
the differentially expressed transcripts corresponded 
to  Faecalibacterium  prausnitzii,  mainly present in 
the O group (9 out of 16) and to the genera Bacte-
roides, mainly present in the OMS group (6 out of 15) 
(Fig.  5). Interestingly, nine of the 31 transcripts had 
significant correlations with anthropometric and bio-
chemical measurements (Additional file  11: Fig. S8). 
The transcripts corresponding to a molecular chaper-
one DnaJ (DN68363_c1_g1) and a chaperone protein 
DnaK (DN73431_c2_g5) negatively correlated with 
LDL levels. One transcript corresponding to an inte-
grase (DN71618_c1_g3) correlated positively with tri-
glycerides and weight, and five transcripts correlated 
positively with diastolic and systolic blood pressure. 
Finally, two transcripts correlated negatively with glu-
cose levels, TlpA family protein disulfide reductase 
(DN72347_c2_g3), and cytochrome b6 (DN70151_
c0_g2). Furthermore, a gene coding for integrase 
(DN71618_c1_g3) was positively correlated with tri-
glycerides and weight, while the 30S ribosomal protein 
S14 (DN70736_c1_g8) was also positively correlated 
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with weight. All these transcripts can be suggested as 
potential biomarkers to differentiate the microbiome 
expression profiles among obesity and obesity with 
metabolic syndrome.

CAZY enzymes were enriched in the Secrebiome
One of the most critical roles of the microbiota is its abil-
ity to utilize complex carbohydrate sources. Thus, classi-
fication according to the Carbohydrate-Active enzymes 
(CAZy) was performed to assess which expressed 
secreted proteins possessed the ability to enhance the 
carbohydrate-harvesting activity and analyze their asso-
ciation with obesity phenotypes. This analysis resulted in 
the identification of 2249 secreted proteins that had cata-
lytic or carbohydrate-binding modules involved in the 
degradation and modification of carbohydrates. Inter-
estingly, enrichment of CAZY enzymes was observed in 
the Secrebiome (7.5%) as compared to the non-secreted 
proteins (3.0%) of the metatranscriptome. The most 
abundant CAZY enzyme classes in the Secrebiome were 
Glycoside Hydrolases (GH; 35.1%), Carbohydrate-Bind-
ing Module (CBM; 33.8%), S-Layer Homology domain 
(SLH; 13.7%), and Carbohydrate Esterases (CE; 9.7%) 
(Additional file 12: Fig. S9).

We did not find significant differences in the distribu-
tion of CAZY enzymes within the Secrebiomes or within 
the non-secreted proteins of the three groups. However, 
when we compared the secreted against the non-secreted 
proteins, we found a significant abundance enrichment 
of CAZY enzymes from cohesin, SLH, dockerin, CBM, 
and Polysaccharide Lyases (PL) classes in the Secrebi-
ome when compared to the non-secreted proteins of the 
metatranscriptome (Fig.  6). Contrastingly, a significant 
underrepresentation was observed in the Secrebiome for 
Glycosyltransferases (GT), Auxiliary Activities (AA), and 
CE CAZy classes. Only the abundance of the glycoside 
hydrolases was not significantly different among Secre-
biome and non-secreted proteins (Fig.  6). These data 
suggest a differential CAZy activity in the Secrebiome. 
Interestingly, the families enriched in the Secrebiome 
seemed to be focused on binding and receptor functions, 
which suggest a role in the communication between the 
microbial communities and of the bacteria with the host.

The Secrebiome of obesity had more abundance 
of antigenic regions (AAR)
Because an important proportion of the expressed pro-
teins may be secreted and therefore, be in direct contact 

Fig. 5  Differentially expressed secretome transcripts. Transcripts significantly associated with either the O or OMS were determined with 
DESeq after expression signal standardization. The heatmap shows the normalized RSEM abundance of each transcript per sample with a higher 
abundance in yellow. Bars on the right depict the total fold transcripts detected in association to each group (in log2 scale). The overlying matrix 
contains the predicted protein name on the left, the putative taxonomic assignation based on an LCA approach on the center, and the associated 
functional annotation on the right
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with the host, we determined the antigenic potential of 
the Secrebiomes calculating the abundance of antigenic 
regions (AAR) value. We found that the Secrebiomes 

of NW, OB, and OMS had significantly more antigenic 
density (Mann–Whitney test p ≤ 0.0001) than the cor-
responding sets of non-secreted proteins for each phe-
notype (Fig.  7). Interestingly, the Secrebiome of the 
NW (AAR = 40.33) was more antigenic than OMS 
(AAR = 40.5) and O (AAR = 40.66). However, signifi-
cant differences among Secrebiome was only observed in 
comparisons of NW vs O (p = 0.0004673), and O vs OMS 
(p = 0.002006), while NW vs OMS was not significant 
(p = 0.4709). This result suggests that the Secrebiome 
associated with obesity decreased the expression of pro-
teins associated with a higher antigenic density.

Discussion
The current study presents, to the best of our knowledge, 
the first insight into the expressed genes corresponding 
to the secreted proteins of the microbiome, the Secrebi-
ome, associated with obesity with, and without metabolic 
syndrome, in children around 9 years of age. The current 
Mexican cohort reflects the unrelenting prevalence of the 
obese population worldwide, a growing problem that is 
more pronounced in developing and developed coun-
tries. In 2017, the Organization for Economic Coopera-
tion and Development (OECD) reported that the United 
States of America and Mexico led obesity rankings. In 
these terms, children are a particularly susceptible popu-
lation that has been often overlooked by governmental 
policies and scientific studies but comprise an essential 
economic and health issue for the future of these coun-
tries. In our cohort of 750 individuals, we found that 
52.94% of the obese children have metabolic syndrome, 
which is similar to the 62% obtained in previous reports 
for Mexican obese children [24].

The main focus of the current study was to assess 
the actual expressed profiles of the microbiota, using 
a metatranscriptomic approach (RNA-Seq). Whereas 
the metagenome may show the full functional potential 
of the microbiota, only a small fraction of the bacterial 
genes are expressed [25]. Thus, a metatranscriptomic 
approach provides a more accurate description of the 
underlying dynamics of obesity, by capturing the com-
munity transcript population representing each taxo-
nomic group in the study [25]. Although our results from 
metatranscriptomics should be interpreted with cau-
tion due to the limited sample size, this work provides a 
framework for further studies using metatranscriptomics 
to analyze the expressed genes of the Secrebiome and its 
close relationship with the host under diseases.

We used the V4 region of the 16S rRNA gene to estab-
lish the taxonomic profile of the microbiota from fecal 
samples of three children groups: normal weight (NW), 
obese (O), and obese with metabolic syndrome (OMS). 
We observed that the three groups are dominated by the 

Fig. 6 Ratio of Carbohydrate‑Active enzymes (CAZys) in secreted 
and non‑secreted proteins. The bars show the ratio of each CAZy 
family present in the total set of secreted (green)and non‑secreted 
(blue) proteins. We used multiple t‑tests to analyze the significant 
differences among the different enzyme families

Fig. 7 Comparison between the abundance of antigenic regions 
values (AAR) of secreted and non‑secreted proteins in the different 
groups. The x‑axis shows the protein set analyzed, and the Y‑axis 
shows the AAR value obtained for each protein in the dataset. The 
line shows the mean value for each group. A Mann–Whitney test was 
performed to compare the AAR within each group with a confidence 
level of 99% (***p ≤ 0.001)
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same three phyla, Firmicutes, Bacteroidetes, and Proteo-
bacteria. However, we detected specific changes in the 
microbiota structure depending on the obesity type. The 
OMS patients had the highest bacterial diversity, followed 
by O and NW patients. This observation is in agreement 
with other studies with big cohorts of obese patients that 
also observe an increase in diversity in them [26]. Con-
trary, some studies revealed a decrease in diversity in 
obese patients [27, 28]. Regarding the Mexican children 
population, one study shows a higher diversity associated 
with obesity [29], and the other two studies showed no 
difference in diversity among obesity and normal-weight 
controls [30, 31]. Thus, the role of bacterial richness and 
diversity in children obesity remains unclear, suggesting 
that more studies are necessary. The PCoA analysis of the 
microbiota showed that the most compact cluster was 
formed among the NW samples, while the most disperse 
was the OMS group; the O group seemed to be an inter-
mediate state of healthy and obese with metabolic syn-
drome. Similar clustering behavior was recently observed 
as a consequence of metabolic abnormalities in the adult 
population [26].

After analyzing the differentially abundant taxa, we 
observed that the genus Porphyromonas and an unde-
termined species within this genus were specifically 
over-abundant in the O group, suggesting that these 
taxa could be potentially used as biomarkers of obe-
sity. Although we did not evaluate a concrete species, 
the presence of a typical member of this genus,  P. gin-
givalis  has been associated as a risk factor for develop-
ing obesity and diabetes [32]. Interestingly, we found 
that  the class Coriobacteria, order Coriobacteriales, 
family Coriobacteraceae, genus Collinsella and species 
Collinsella aerofaciens were significantly more abun-
dant, specifically in the OMS as compared to O and NW 
(Fig. 2), suggesting them as potential biomarkers for obe-
sity with metabolic syndrome. Furthermore, this species 
also showed a significant positive correlation with tri-
glycerides (r = 0.62, p = 0.00053), while showing a nega-
tive correlation with HDL (r = − 0.4, p = 0.039). Also, the 
genus Collinsella correlated positively with triglycerides 
(r = 0.64, p = 0.00029), BMI (r = 0.39, p = 0.044), and a 
negative correlation with HDL (r = − 0.4, p = 0.036), and 
had a weak positive correlation with waist circumference 
(r = 0.35, p = 0.073). The same behavior was observed 
with the corresponding family Coriobacteriaceae, order 
Coriobacteriales and class Coriobacteriia (Additional 
file 5: Table S2). We suggest that these taxa may be con-
sidered as biomarkers for OMS. In this regard, it was 
recently reported that an altered abundance of Collin-
sella genus changes the host’s plasma cholesterol levels, 
showing a positive correlation with LDL cholesterol [33]. 
Additionally, another study with big cohorts of adults 

recently reported the finding of an increased  Collin-
sella abundance in obese patients [26]. Also, it has been 
observed that low dietary fiber intake increases Collin-
sella abundance in the gut microbiota of obese pregnant 
women [34]. Evidence from literature strongly suggests 
that Coriobacteraceae are important constituents of 
gut microbiomes affecting the physiology of human and 
mice hosts [35]. Thus, it appears crucial to evaluate host-
microbe interactions in finer detail, in the context of host 
lipid and cholesterol metabolism and their role with obe-
sity and obesity with metabolic syndrome.

Importantly, the abundance of Parabacteroides dista-
sonis was significantly decreased in OMS as compared 
to O but not with respect to NW. Interestingly this spe-
cies correlated positively with LDL cholesterol levels 
(r = 0.58, p = 0.0023). Recently, a study showed that P. dis-
tasonis produces metabolites that can reduce weight gain 
and hyperglycemia as well as improve glucose metabo-
lism and symptoms of obesity-related conditions such 
as liver disease [36]. In this regard, our findings highlight 
the important effects of this species as a biomarker of 
obese children with metabolic syndrome. Also, the class 
Erysipelotrichi, order Erysipelotrichales, family Erysip-
elotrichaceae, genus Catenibacterium and an undeter-
mined Catenibacterium species were significantly more 
abundant in OMS groups when compared to the O and 
NW, and may prove interesting biomarkers for  obesity 
with metabolic syndrome. This genus has only one spe-
cies that has been properly described (Catenibacterium 
mitsuokai), and a study with  humanized mice fed with 
a “western” diet revealed an increased representation of 
Catenibacterium mitsuokai, in the fecal samples of these 
animals when compared with mice fed with a low fat/
plant polysaccharide diet [37].

There is evidence from literature documenting a 
potential role for the family Erysipelotrichaceae in host 
physiology. The increased abundance of this family has 
been associated with host dyslipidemia in the context 
of obesity, metabolic syndrome and hypercholester-
olemia [38–40]. Additionally, nutritional studies also 
support the influence of dietary fat on the abundance of 
this family [41]. Our data highlights the importance of 
the family Erysipelotrichaceae in metabolic syndrome 
of obese children and suggest that Catenibacterium and 
its undetermined species may be interesting as novel 
biomarkers of  this disease. On the other hand, we also 
found an increased abundance of Bacteroidales in NW 
as compared to the OMS group, and an increase in the 
abundance of Clostridiales in OMS as compared to NW 
group. Recently, a report in adults determined that the 
microbial gut community of obese people was character-
ized by higher Clostridiales whereas lean people tend to 
have higher Bacteroidales counts [42]. The microbiota 
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of obese adults recently revealed a high abundance of 
Coprococcus, a genus of Clostridiales [43], as well as 
in pregestational obesity [44], which is  in accordance 
with our data, suggesting that these bacteria are impor-
tant determinants in children obesity with metabolic 
syndrome.

The N50 of our metatranscriptome assembly was ~ 700 
nt, which is congruent to the expected length of Prokar-
yotic mRNA molecules, (~ 900 pb long). Addition-
ally, > 54% of the total reads from our samples mapped 
back to the assembly, suggesting an adequate assembly, 
even better than the ones obtained in other studies using 
a similar methodology [45].  Indeed, when we rema-
pped sequencing data from different cohorts, we recov-
ered ~ 25% of the reads despite them being of healthy 
adults from different populations, so this metatranscrip-
tome and Secrebiome could be considered as a reference 
for further studies in different populations. Interestingly, 
the read proportion that mapped back to the Secrebiome 
from our children samples tended to be lower and more 
variable than the read proportion of the adult studies, 
suggesting that the adults tend to maintain a stable core 
of the Secrebiome, while children are more variable in 
read mapping abundance.

Bioinformatic prediction of the expressed genes corre-
sponding to the Secrebiome is a novel methodology that 
could help us discover and understand novel communi-
cation mechanisms between the host and the microbi-
ota. We found that ~ 26% of the total metatranscriptome 
expressed genes on the gut microbiota can be flagged as 
secreted proteins. The study of CAZymes in obesity stud-
ies is crucial due to their role in the degradation of com-
plex carbohydrates that can be absorbed by the intestinal 
colonocyte. Contrary to a previous study of CAZymes in 
metagenome of obesity [46], we did not find differences 
in the Secrebiome between NW, O, and OMS, possibly 
due to the experimental design of our study. Still, we 
found that the abundance of Faecalibacterium and Fae-
calibacterium prausnitzii  were significantly increased 
in O as compared to NW (Fig. 1e) and that this species 
had a significant positive correlation with BMI (r = 0.38, 
p = 0.048). It is well documented that F. prausnutzii  can 
act as a  probiotic due to its production of butyrate [47, 
48], and it has been reported as depleted from the gut 
microbiota in individuals with metabolic syndrome [49], 
although we did not find a total depletion of this spe-
cies in OMS group. However, a recent study with adult 
cohorts of obese patients found an increased abundance 
of Faecalibacterium [26], and also in a Mexican obese 
children cohort, an increase of abundance was reported 
[30]. Thus, further studies are necessary to clarify the role 
of Faecalibacterium in obesity.

Secreted proteins vary among the bacterial realm, as 
secretion systems are widely variable in complex com-
munities such as the gut [50]. After establishing the 
characterization of the secreted proteins in our samples, 
the Gene Ontology and Enzyme Commission numbers 
showed a substantial prevalence of surface and mem-
brane proteins in the Secrebiome. Furthermore, we also 
detected a marked prevalence of catabolic enzymatic 
activity and binding proteins that may contribute to 
nutrient uptake, polymer biodegradation, or cell attach-
ment to the substratum or other cells. The Secrebiome 
presented a very different CAZY profile when compared 
to the rest of the metatranscriptome, with the Secrebi-
ome being enriched in carbohydrate-catabolism pro-
teins, namely glycoside hydrolases, carbohydrate-binding 
module, SLH domain bearing proteins, and carbohydrate 
esterases. Although the corresponding CAZy distribu-
tion was not group-associated, as a whole, the Secre-
biome was particularly enriched in the production of 
SLH, and the dockerin-cohesin complex, congruent to 
binding requirements for the assembly of cellulosomes. 
Additionally,  the abundance of antigenic regions (AAR), 
which evaluates antigenic density, found differences that 
were statistically significant between the NW and the O 
groups. As previous studies by our group have shown, 
the secretomes of more virulent pathogenic bacteria tend 
to have a higher antigenic density; this may be an indi-
cator of pathogen activity in the obese subjects that may 
deserve further study [15, 51].

A total of 31 specific transcripts within the Secrebi-
ome were deemed differentially abundant in associa-
tion with either the O or OMS group. Since most were 
virtually absent from the NW (Fig.  4), we infer they 
may be related to the subjects’ condition. Interestingly, 
most of those presenting a high fold change in the O 
group (Fig.  5) were homologous to the genome of  Fae-
calibacterium prausnitzii,  which, as mentioned previ-
ously, has been considered as probiotic. Contrastingly, 
most differentially expressed transcripts associated with 
the OMS group were homologous to the pangenome of 
Bacteroides, a genus that has been commonly reported 
to be associated with overweight subjects [52]. Bacte-
roides species were also predominant among urban gut 
microbiomes and contained unique gene clusters, which 
encode different CAZymes, whose functions could be 
related to an energy over-extraction of the microbiota 
form OMS patients [53]. Even so, it is essential to note 
that although we can evaluate the taxonomy of these spe-
cific marker transcripts, this is by no means a thorough 
representation of the whole taxonomy and cannot rule 
out their presence and activity in the O or NW groups. 
Only some correlations were significant with the clinical 
data associated with obesity. Of these, perhaps the most 
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interesting were those with LDL, commonly regarded as 
“bad cholesterol”. Two chaperone proteins were found to 
be negatively correlated to LDL mg/dL, DnaK (HSP70), 
and DnaJ (HSP40), both more prevalent in the O group 
and less in the OMS group. These have been reported to 
interact with one another to carry out ATP-hydrolysis, 
which may be related to the thermogenesis and bind-
ing with unfolded polypeptide chains to prevent their 
aggregation.

Overall, this study showed that the definition of the 
Secrebiome provided new information on the gut micro-
biome functions that are directly related to the host com-
munication, helping us to understand the functional 
interplay within the holobiont and open new insights in 
the study of the expressed microbiome. These findings 
may provide valuable insights to understand how the 
expressed bacterial genes and their respective proteins in 
the gut influence the metabolic response of the host to 
different nutrients and the alterations during obesity and 
obesity with metabolic syndrome.

Conclusions
One of the most exciting roles of the microbiota is its 
capacity to interact with the host and influence the over-
all health state. One of the mechanisms that the bacteria 
use to this end, is the secretion of proteins that interact 
directly with the host, metabolizing the nutrients for 
energy harvest and binding to host-cell receptors for 
signaling activities. The 16S rRNA profile of our samples 
showed the enrichment of taxa that have been previ-
ously reported as biomarkers for obesity such as Corio-
bacteraceae and Collinsella and suggest some new ones 
to be considered such as an increase of Collinsella aero-
faciens and Erysipelotrichaceae, Catenibacterium and 
Catenibacterium sp., and a decrease of Parabacteroides 
distasonis, which correlated with clinical and anthropo-
metric parameters of obesity and metabolic syndrome. 
After comparing our metatranscriptome and Secrebiome 
with data from studies of other populations we observed 
that the proportion of mapped sequences was more vari-
able for children samples than for adults, suggesting the 
establishment of a core Secrebiome in the adult popula-
tion; further, given the high proportion of sequences that 
mapped back to our assembly, it could be considered as 
a reference for further studies in different populations. 
The differential expression analysis of the genes of Secre-
biome proteins showed 31 significantly overexpressed 
genes for the O and the OMS group. Interestingly, these 
genes were homologous to F. prausnutzii in the O group 
and Bacteroides in the OMS group. Although this data 
does not establish the causal role of these taxa to the dis-
ease phenotypes, it cannot be discarded that some taxa 
could cause the dysbiosis present in a disease state.

Finally, the analysis of CAZy enzymes showed a dif-
ferential distribution between the secreted and non-
secreted proteins. The Secrebiome showed an increased 
presence of cohesin, SLH, dockerin, CBM, and PL 
domain bearing proteins, showing a potential criti-
cal role of the secreted proteins in the degradation and 
utilization of carbohydrates as  nutrients. Overall, this 
study showed that the definition of the expressed genes 
of the Secrebiome provided new information on the gut 
microbiome functions that are directly related to the host 
health state and provide essential insights to understand 
how the bacterial proteins in the gut could influence the 
metabolic response of the host to different nutrients. The 
metatranscriptome and 16S profiling demonstrated the 
importance of the separation of obesity from obesity with 
metabolic syndrome patients for a better understanding 
of the microbiome role in the disease.

Methods
Study population, anthropometric and clinical parameters
We analyzed the stools from 10 normal weight (NW), 
10 obese (O), and 7 obese with metabolic syndrome 
(OMS) children, aged 7–10 years old, from a summer-
camp of children of Mexican Health Ministry employ-
ees. All children came from households with a middle 
economic class income and belonged to a similar socio-
cultural status. All of them lived in Mexico City at the 
time of collection and did not practice any sport regu-
larly. The study groups were paired by gender and age. 
Samples were refrigerated at home at 4  °C and trans-
ported to the research facility within the following 12 h 
after collection in a portable cooler with ice packs to 
preserve the temperature. All samples were received at 
the research facility in the early morning; 200-mg ali-
quots were made and stored at − 70  °C in sterile plas-
tic containers with RNA later. Obesity was defined by 
body mass index (BMI) ≥ 95th percentile, whereas NW 
was defined as BMI between the 15th and 75th percen-
tiles for age and gender, based on the guidelines of the 
Centers for Disease Control and Prevention (CDC). 
Metabolic syndrome parameters were determined 
according to previous reports [24], and OMS were 
defined by the presence of waist circumference > 75th 
by age and gender, and at least two of the follow-
ing metabolic traits: (1) triglycerides > 1.1  mmol/L 
(100 mg/dL); (2) HDL cholesterol < 1.3 mmol/L (50 mg/
dL), (3) glucose > 6.1 mmol/L (110 mg/dL) and (4) sys-
tolic blood pressure > 90th percentile for gender, age, 
and height. Blood samples of 5  mL were drawn after 
8–12  h of fasting on the same day of the feces collec-
tion. Children in the O group were selected so that they 
did not have more than one trait matching the meta-
bolic syndrome traits. Exclusion criteria for all samples 
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included recent bodyweight loss > 10%, antibiotic intake 
3 months before sample collection, and the occurrence 
of diarrhea or acute gastrointestinal illness during 
the same period. The Ethics Committee approved the 
study of the Instituto Nacional de Medicina Genómica 
(INMEGEN) in Mexico City, Mexico. The parents or 
legal guardians of each child signed the informed con-
sent form for participation, and all children assented 
to participate. Anthropometric parameters (Additional 
file  1: Table  S1), blood pressure, and body mass index 
were measured following standardized procedures, as 
previously described.

Sample collection and DNA/RNA extraction
Total bacterial metagenomic DNA for 16S rRNA ampli-
con sequencing was extracted from 200  mg of feces 
using the  QIAamp® DNA Stool Mini Kit (Qiagen, Inc.; 
Hilden, Germany) following the manufacturer’s pro-
tocol. The total RNA extraction was performed with 
a combination of the ZR Soil/Fecal RNA MicroPrep 
(Zymo Research; California, USA) and the RNeasy 
Mini Kit (Qiagen, Inc.; Hilden, Germany), according 
to manufacturer’s protocol. The total RNA quality was 
assessed with an Agilent 2100 bioanalyzer and quanti-
fied with a Qubit 2.0 Fluorometer. Human and bacte-
rial ribosomal RNA was removed using Ribo-Zero Gold 
rRNA Removal Kit (Illumina; California, USA) follow-
ing manufacturer instructions.

High‑throughput 16S rRNA profiling and RNA‑Seq
The V4 hypervariable region was amplified using 515F 
and 806R primers following the protocol by Caporaso 
and collaborators [54]. The amplicons were prepared 
using 100 ng of total DNA, and products were confirmed 
by agarose gel and purified using Agencourt AMPure XP 
beads (Beckman Coulter). Fragment size and DNA con-
centration of each amplicon were determined using an 
Agilent D1000 ScreenTape for 4200 TapeStation System 
(Agilent Technologies) and a Qubit 2.0 fluorometer (Inv-
itrogen), respectively. Amplicons were sequenced using 
an Illumina MiSeq platform at the INMEGEN using rea-
gents for 2 × 250 paired-end sequencing.

The RNA-seq libraries were prepared using the NEB-
Next Ultra RNA Library Prep Kit for Illumina (New Eng-
land Biolabs; Massachusetts, USA). In brief, total RNA 
previously depleted of rRNA was fragmented at 94  °C 
for 14  min, followed by first-strand retrotranscription 
and second cDNA synthesis with random primers using 
Klenow fragments. Next, we performed the ligation of 
Illumina compatible indices for multiplex after repairing 
DNA ends and adding a dA-tail to each strand. Finally, 

we performed the enrichment PCR amplification with 
12 cycles following the manufacturer’s instructions. 
The quality and quantity of the resulting libraries were 
assessed with a Qubit 2.0 Fluorometer and Agilent 2100 
bioanalyzer. All RNAseq libraries were sequenced at the 
INMEGEN sequencing service using the Illumina Next-
Seq500 platform for 2 × 150 paired-end sequencing.

Bioinformatic analysis of the 16S rRNA profiling data
We applied a quality filtering (> Q20 Phred score) and 
ambiguous nucleotides removal. The resulting reads 
were joined and analyzed using the QIIME 1.9.1 pack-
age. Amplicon sequences were clustered at 97% identity 
into operational taxonomic units (OTUs) guided by the 
Greengenes Database (version 13_8) using UCLUST 
allowing for reverse strand matches following a closed 
reference-based clustering approach. We assigned the 
taxonomy to the resulting Operational Taxonomic Unit 
(henceforth OTUs) based on the one from 97% iden-
tity clusters of the Greengenes database. Sequences not 
aligning the references were not considered for down-
stream analyses. We eliminated the OTUs accounting 
for ≤ 0.005% of the total read abundance (80 cumulative 
reads) from downstream analyses. A valid taxonomy was 
assigned to the reads, and it  was collated and reported 
in terms of relative abundance. UniFrac distances were 
calculated with scripts from the QIIME v1.9 suite. Data 
ordination was carried out from the distance matrices 
using a principal coordinate analysis (PCoA) with vegan 
using in-house scripts. Differentially abundant taxa 
(group-specific) were identified with the LDA Effect Size 
algorithm (LEfSe Galaxy Version 1.0) using a standard-
ized taxonomy table (mean of 10,000 rarefactions at a 
depth of the smallest sample) to cope with uneven sam-
ple size. No per-sample normalization of the sum of the 
values to 1  M was used, and a minimum LDA score of 
1 was considered. Group pairwise comparisons were car-
ried out as well (not group-specific).

Bioinformatic analysis of RNA‑Seq data
The process is briefly described as follows. The first step 
was the quality assessment by FastQC (Andrews S. (2010). 
We filtered using a 20 Phred quality score trimming with 
Trimmomatic v 0.36 with a sliding window of 6 nt, follow-
ing the removal of sequencing adapters and ambiguous 
bases. The resulting high-quality sequences were depleted 
of Prokaryotic and Eukaryotic rRNAs using Ribopicker 
v.0.4.3 and the SILVA rRNA database (132 release). The 
remaining non-rRNA sequences were aligned to the 
human genome and transcriptome (GRCh38_snp_tran) 
using HISAT2. Human-filtered sequences were then used 
as the input for the de novo transcriptome assembly with 
the Trinity metatranscriptomic assembler. After that, the 
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original reads were aligned to the transcriptome using Bow-
tie2 v2.3 as part of the Trinity pipeline. The abundance of 
expression was determined by FPKM for the normalization 
of sequencing depth and transcripts length, considering 
only the transcripts with FPKM > 1. TransDecoder (https 
://githu b.com/Trans Decod er/) was used to identify the 
longest ORFs candidate of protein coding regions within 
transcript sequences. The resulted protein sequences 
were annotated with hmmscan from the HMMER suite 
v3.1 against the dbCAN to obtain the carbohydrate-active 
enzymes (CAZY). Protein sequence homology was anno-
tated by BLASTP against the NCBI non-redundant (NR) 
and functionally mapped to Gene Ontology (GO) terms 
using Blast2GO. The E-value cut-off was set at 1.0E−3.

Secrebiome definition
To assess the set of secreted proteins of the metatran-
scriptome, we followed the bioinformatic strategy previ-
ously published in Cornejo-Granados et al. 2017. Briefly, 
the complete set of proteins was analyzed independently 
with six different feature-based tools to identify the 
excreted/secreted proteins (ES) by different secretion 
pathways and removing the ones that had transmem-
brane domains. All secreted proteins were analyzed with 
BLASTP against the NCBI’s non-redundant (nr) database 
using Blast2GO with an E-value cut-off set at 1.0E−3 to 
identify homolog proteins. Additionally, all proteins were 
functionally mapped to GO terms and annotated by set-
ting the following parameters: E-value-hi-filter: 1.0E−3; 
Annotation cut-off: 55; GO weight: 5 and Hsp-Hit Cover-
age cut-off: 0. Finally, we used Blast2GO to identify the 
over or under-represented GO and EC terms in the ES 
proteins, by setting the term filter p value to ≤ 0.05.

Differential gene expression analysis
We selected the genes of the Secrebiome with an 
FPKM > 1 for the differential gene expression analysis. 
In this manner, a gene is only considered if it is covered 
by reads in 1 kB long. These cut-offs were more stringent 
than those used in previous studies. Protein isomeres 
detected in the secretome were subjected to filtering for 
reducing data sparsity. The expression measurement was 
in RNA-Seq by Expectation–Maximization (RSEM), a 
reference-free transcript quantification method. Briefly, 
the expression below 1 in any sample was not consid-
ered, and isomeres with less than 2 cumulative observa-
tions across the samples, or those appearing in less than 
3 samples or less than 2 groups were discarded. The 
RSEM of the resulting core isomeres in the O and OMS 
groups were standardized with the Differential expres-
sion of RNA-Seq (DESeq  2 v. 1.26.0) R package using 
default parameters, and those that were more abundant 
in either group were subsequently identified. Isomeres 

with a p-value below an α of 0.05 were considered as dif-
ferentially abundant expression markers (given by log2 
fold change) and were used for downstream analyses. 
Identified gene markers associated with either the O or 
the OMS groups were compared with the NW samples 
by standardizing the RSEM tables with DESeq using 
the three groups. Pearson/Spearman’s rank correlations 
between the gene markers and clinical data were calcu-
lated with in-house scripts. Cross-referenced GO and 
EC tables were filtered to retain only proteins identified 
with a unique identifier. These were collated per sample 
and the tables were standardized following the same pro-
cedures for the protein isomeres. These were then used 
for the calculation of recruitment plots using vegan with 
in-house scripts. The sequences corresponding to the dif-
ferentially abundant transcripts identified with DESeq 
were used for homology search against NCBI’s NT data-
base using the blastn algorithm from the BLAST + suite v 
2.10 using with expected value 0.0001, id = 0.80, coverage 
75%, Match/Mismatch 2,-3, and Gap/ext 5,2. If trailing 
hsps had a difference of > 7.5% identity, only the former 
was considered, and hits with no taxonomic information 
were ignored. The associated taxonomy was determined 
with a last common ancestor approach of all results.

Search of CAZymes in the metatranscriptome 
and Secrebiome
We downloaded the CAZy database from http://bcb.
unl.edu/dbCAN 2/downl oad/Datab ases/dbCAN -old@
UGA/ containing 921,174 sequences as of September 
2017. The detection of Carbohydrate-Active enzymes 
was performed using HMMER v3.1. Briefly, we prepared 
the CAZy HMM database with hmmpress using default 
parameters, and searches were carried out with hmmscan 
using the predicted proteins of the metatranscriptome 
and Secrebiome as inputs. Finally, we parsed the results 
using hmmscan-parser.sh and in-house scripts.

Calculation of the abundance of antigenic regions (AAR)
The AAR is a value used to estimate the antigenic density 
of a protein, calculating the number of antigenic regions 
and normalized by the sequence length. We calculated 
this value using the Secret-AAR webserver for the differ-
ent protein data sets [51]. Then, we used a Mann–Whit-
ney test (p < 0.001) to establish if there was a significant 
difference between AAR values of the different data sets.

Data accessibility
The sequencing data have been deposited in the NCBI 
GEO repository and can be consulted under the 

https://github.com/TransDecoder/
https://github.com/TransDecoder/
http://bcb.unl.edu/dbCAN2/download/Databases/dbCAN-old%40UGA/
http://bcb.unl.edu/dbCAN2/download/Databases/dbCAN-old%40UGA/
http://bcb.unl.edu/dbCAN2/download/Databases/dbCAN-old%40UGA/
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accession number GSE143207. Requests for additional 
material should be made to the corresponding author.
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shown. DESeq‑based standardization of the expression signal was carried 
out considering all samples. 

Additional file 11: Figure S8. Correlations between differentially abun‑
dant transcripts and clinical data. Only significant correlations are shown 
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