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Abstract 

Background: S. cerevisiae has attracted considerable interest in recent years as a model for ecology and evolution-
ary biology, revealing a substantial genetic and phenotypic diversity. However, there is a lack of knowledge on the 
diversity of metabolic networks within this species.

Results: To identify the metabolic and evolutionary constraints that shape metabolic fluxes in S. cerevisiae, we used a 
dedicated constraint-based model to predict the central carbon metabolism flux distribution of 43 strains from differ-
ent ecological origins, grown in wine fermentation conditions. In analyzing these distributions, we observed a highly 
contrasted situation in flux variability, with quasi-constancy of the glycolysis and ethanol synthesis yield yet high 
flexibility of other fluxes, such as the pentose phosphate pathway and acetaldehyde production. Furthermore, these 
fluxes with large variability showed multimodal distributions that could be linked to strain origin, indicating a conver-
gence between genetic origin and flux phenotype.

Conclusions: Flux variability is pathway-dependent and, for some flux, a strain origin effect can be found. These 
data highlight the constraints shaping the yeast operative central carbon network and provide clues for the design of 
strategies for strain improvement.
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Background
Cellular metabolism entails a large number of reactions 
that are involved in the conversion of various resources 
into precursors and energy for biosynthesis and cellu-
lar compounds. The rates of these reactions, i.e. fluxes, 
reflect metabolic activity through the operative network. 
Fluxes are the combined result of regulation at many dif-
ferent biological levels, such as transcription, translation, 
post-translational protein modification and protein–pro-
tein interactions. Therefore, metabolic fluxes are a global 
representation of the cellular phenotype expressed under 
specific conditions; thus, analyzing flux distribution is a 
valuable approach to study cell metabolism [1].

While intracellular fluxes are difficult to measure exper-
imentally, they can be predicted by different methods 

that rely on constraint-based models (CBM) that for-
malize the metabolic network as a stoichiometry matrix. 
These CBM range from small networks focused on a 
specific aspect of cellular metabolism to genome-scale 
models that include all reactions of a given organism. The 
first step to solve these systems and predict fluxes from 
these networks is to add constraints on the input and 
output fluxes. Depending on the number of constraints 
and the size of the network, it is possible to estimate 
the fluxes in some cases; this approach is referred to as 
metabolic flux analysis (MFA). However, in most cases, 
adding constraints only on input and output data is not 
sufficient; therefore, there are two possibilities: the 13C-
MFA [2] and the flux balance analysis (FBA), [3]. In the 
13C-MFA approach, cells are fed 13C-labeled glucose, and 
the analysis of the subsequent 13C enrichment in differ-
ent amino-acids generates experimental data that can be 
used to constrain internal fluxes and therefore estimate 
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intracellular fluxes [1, 2]. By contrast, the FBA is based 
on the choice of an optimal solution in the space of pos-
sible solutions defined by the constraint stoichiometry 
matrix. This solution will optimize an objective function 
[3]; therefore, the predicted flux distribution depends on 
the objective function that is used [4–6]. Objective func-
tions commonly used are maximization of ATP produc-
tion [7], minimization of metabolic adjustment [8, 9] or, 
most frequently, maximization of biomass production 
[10, 11]. These objective functions appear to be more or 
less effective depending on the conditions, constraints 
and models, without one of them emerging in particular 
[6].

In a previous study, 13C-MFA and FBA approaches have 
been used to predict intracellular fluxes of central car-
bon metabolism of S. cerevisiae in conditions where the 
intracellular redox balance is modified [12]. Comparable 
relative changes between environments were obtained 
regardless of the predicting method, even if some flux 
predictions differed, in particular for the pentose phos-
phate pathway (PPP) [12].

Understanding how metabolic fluxes are modulated 
by environmental and/or genetic perturbations is a cen-
tral question to understanding cellular physiology. For 
example, the FBA approach has been used to study the 
flux distribution sensitivity of S. cerevisiae wine yeast 
to environmental conditions, including various glu-
cose concentrations, temperature or acetoin levels [9, 
13]. In these studies, the PPP was one of the most vari-
able fluxes, while the glycolytic flux remained virtually 
unchanged. These approaches have also been widely 
used to study network robustness and the effects of 
deletion mutants [14–16]. For example, using a 13C flux 
approach in S. cerevisiae, Blank et  al. [17] have shown 
that network redundancy through duplicate genes is 
a major determinant of genetic network robustness 
(75 %), while alternative pathways contribute to a lesser 
extent (25  %). Using a similar approach, Velagapudi 
et al. [18] studied the effect of knockout strains on the 
rerouting of metabolic fluxes in glucose and galactose 
media, highlighting interesting links between pathways, 
such as a positive correlation between flux through the 
PPP and biomass yield.

Flux prediction has also been used to guide metabolic 
engineering and strain improvement strategies [19, 20]. 
For instance, Bro et al. used CBM to predict the best pos-
sible metabolic engineering strategies to increase ethanol 
yield [21]. Guided by a genome scale model, they devel-
oped a strain with a glycerol yield reduced by 40 % and an 
ethanol yield increased by 3 % without affecting growth. 
Other examples include the prediction of strategies to 
optimize the yields of purine [5], succinic acid [20, 22] or 
proline [23].

The estimation of metabolic fluxes was also used in a 
few studies to investigate the divergence of flux distribu-
tion among species. 13C flux analysis has been used to 
compare flux distributions in central carbon metabolism 
for pairs of species, including S. cerevisiae and Phaffia 
rhodozyma [24] or S. cerevisiae and Pichia stipitis [25], 
highlighting differences in the relative flux distribution, 
especially for the PPP. Using 13C flux analysis, Blank et al. 
[17] and Christen and Sauer [26] studied the diversity 
of flux distributions in fourteen and seven yeast spe-
cies, respectively. In both studies, similar correlations 
were shown between metabolic pathways, in particular, a 
trade-off between glycolysis and TCA fluxes and a posi-
tive correlation between biomass production and flux 
through the PPP.

In recent years, tremendous knowledge has been 
gained regarding the genetic and phenotypic diversity of 
S. cerevisiae [27–34]. The phenotypic diversity in these 
studies has mainly been addressed by the comparison 
of growth rate patterns in various media. Several other 
studies have begun to characterize the diversity of more 
various phenotypic traits. Spor et  al. [35] have stud-
ied the phenotypic diversity of six life-history traits and 
three metabolic traits of different strains of S. cerevisiae, 
and they have identified two main life-history strategies, 
the “ants” and “grasshoppers,” which are characterized 
by divergence in cell size, reproductive rate and carrying 
capacity. A wider phenotypic analysis, performed with 
72 S. cerevisiae strains from different origins and study-
ing seven life-history traits and eleven metabolic traits, 
showed that strain origin has a wide impact on pheno-
types [36]. Other studies have focused on nitrogen avail-
ability [37] or bio-ethanol-related traits [38].

Thus, the intra-species diversity of flux distribution 
remains unexplored. Studying the diversity of metabo-
lism, particularly of metabolic fluxes, is fundamental to 
understanding the constraints and regulations that shape 
strain phenotypes. The functional and regulatory proper-
ties of yeast central carbon metabolism (CCM) determine 
most of the phenotypic traits relevant for various indus-
trial processes, including food and beverage production 
(wine, bread, beer, cheese etc.), bioethanol or the use of 
yeast as a cell factory. For example, the fermentation rate, 
ethanol yield or production of acetate, and even aroma 
production are all dependent on carbon metabolism.

Thus, understanding how metabolic constraints struc-
ture metabolic pathways may enable a better exploita-
tion of this diversity for industrial biotechnology. The 
objective of this study was to characterize the diversity 
of metabolic fluxes in a large set of S. cerevisiae strains 
from different genetic and ecological origins. To this end, 
we used a FBA approach to predict flux distribution for 
43 strains of S. cerevisiae from six different ecological 
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origins: bread, rum, wine, flor, Mediterranean and Amer-
ican oak. The analysis of flux distribution dataset enabled 
us to identify the most flexible/robust fluxes and several 
correlations or trade-offs between metabolic pathways. 
In addition, we analyzed the flux structuration to strain 
origin in order to observe a possible convergence.

Results
In this work, we used DynamoYeast, a previously 
developed constraint-based model of central carbon 
metabolism [9], to study the diversity of metabolic flux 
distributions for 43 strains of six different ecological 
origins: “Bread,” “Rum,” “Wine,” “Flor,” “Mediterranean 
Oak” (Med_Oak) and “American Oak” (Oak). This model 
comprises the cytosol, mitochondria and extracellular 
medium and includes upper and lower glycolysis, the 
PPP, the synthesis of glycerol, the synthesis of ethanol, 
and the reductive and oxidative branches of the TCA as 
the main metabolic pathways (Fig. 1).

Fermentation was performed for all strains in a syn-
thetic medium simulating grape must, containing high 
sugar and low nitrogen concentrations. Typical wine 
fermentation comprises a lag phase, a growth phase of 
approximately 24–36  h followed by a stationary phase, 
during which most of the sugar is fermented (reviewed 
in Marsit and Dequin [39]). We measured the production 
of biomass and metabolites, including ethanol, glycerol, 
acetate, succinate, pyruvate and alpha-ketoglutarate dur-
ing the growth phase (at 11 g/L CO2 released), which can 
be considered as steady state (a prerequisite to CBM). 
These experimental data (±2.5 %) were used to constrain 
the model as upper and lower bound to then perform a 
flux balance analysis (FBA).

The FBA consists of choosing the best solution for 
the objective function in the space of possible fluxes. 
Instead of using an optimization that maximizes biomass 
flux, which is frequently used in FBA studies, we chose 
to minimize the glucose input, allowing us to use the 
experimental biomass as a constraint for the model. By 
making this optimization choice, we considered that the 
yeasts were optimal, in that they used the least amount 
of resources (here the glucose input) to produce biomass 
and fermentation byproducts. This strategy also has the 
advantage of optimizing the modeling approach by maxi-
mizing the use of available experimental data. Using this 
approach, we obtained a flux distribution for 68 fluxes of 
the central carbon metabolism for each strain, expressed 
as relative fluxes normalized to the specific glucose 
uptake in the corresponding strain.

In this type of optimization, the given solution is often 
not the only one that meets the optimization criterion; 
i.e., different possible pathways are perfectly equiva-
lent for the optimization criteria. We thus decided to 

characterize all equivalent solutions to determine the 
fluxes that varied most between alternative solutions, 
which would therefore correspond to poorly predicted 
fluxes. To achieve this, we first fixed the input and out-
put fluxes to the exact values predicted by the FBA, and 
we then used the “enumerateOptimalSolution” algo-
rithm from the cobra toolbox [40] to identify all alterna-
tive solutions. For the large majority of fluxes, we found 
only one predicted value, except for the fluxes of the 
reductive branch of the TCA involved in the conversion 
of malate to fumarate and then to succinate, for which 
two solutions were identified. Indeed, these fluxes can 
be cytoplasmic or mitochondrial, which had no effect 
on the other fluxes predicted by the model, as the trans-
port between these two compartments of the metabolites 
was free in our model. Setting either option to zero sup-
pressed the alternative solution. We finally retained the 
solution going through the cytoplasm, which involved 
fewer reactions (no mitochondrial transport).

Then, we considered the biological variance between 
strains to identify the more robust and variable fluxes 
of the central carbon metabolism by studying the indi-
vidual flux distributions (Fig.  1) and by comparing the 
variation coefficients (the ratio of the standard deviation 
to the mean) between fluxes (Fig.  2). Substantial differ-
ences were found in the variability of fluxes depending 
on the metabolite pathways (Fig.  2). The glycolysis and 
ethanol synthesis pathways displayed almost no varia-
tion (e.g. Pyr_Acald: 170.78 ± 2.76 %, Fig. 1a; Acald_Eth: 
162.83  ±  3.02  %, Fig.  1d). The reductive and oxidative 
branches of the TCA (e.g. Cit_Icit_m: 1.02  ±  0.24  %, 
Fig. 1g; Pyr_Oaa: 2.76 ± 0.34 %, Fig. 1l), the glycerol syn-
thesis pathway (e.g. Glyc_t: 14.41 ± 1.29, Fig. 1m) and the 
biomass synthesis (BIOMASS: 1.02 ± 0.18 %, Fig. 1i) dis-
played a moderate variation. By contrast, the PPP path-
way was the highest variable pathway (e.g. G6p_6pgl: 
1.64 ± 0.68 %, Fig. 1n).

The acetaldehyde node displayed a particular pattern 
as it includes individual fluxes with very different varia-
bilities (Fig. 2): besides the invariant synthesis of ethanol, 
the synthesis of acetate was highly variable with a wide 
bimodal distribution (Acald_Ac: 2.19 ± 1 %, Fig. 1b). The 
acetate output (Ac_t: 2.43 ± 1 %, Fig. 1f ) and the excre-
tion of acetaldehyde (Acald_t: 3.08  ±  1.63  %, Fig.  1e) 
were also highly variable.

Then, we searched for potential links between fluxes 
by studying all correlations between the model’s fluxes 
(Fig. 3). This approach first highlighted a “pathway block” 
structure, where fluxes were highly correlated to each 
other and operated almost like a single flux. For example, 
all the fluxes of the PPP displayed a Pearson correlation 
coefficient between them greater than 0.985 (Fig. 3). We 
identified seven blocks: upper glycolysis, lower glycolysis, 
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Fig. 1 Schematic representation and distributions of fluxes in central carbon metabolism. Schematic representation of the average flux of 43 
strains. The colors of the lines are representative of the average flux values across all strains expressed as a percentage of the glucose input and rep-
resented by a gradient of color from yellow to red. The average flux values ± the standard deviation are indicated by blue numbers for selected and 
representative reactions. Distribution of flux values for several selected reactions (a–n). The fluxes are normalized by the average flux of each reac-
tion and therefore are represented by between 0 and 3, where 1 is the average flux. The reactions constrained by experimental data are indicated in 
red, and those predicted by the model are in blue
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glycerol synthesis, the TCA reductive branch, the PPP, 
the TCA oxidative branch and the biomass block. The 
latter included the biomass synthesis reaction and all 
the fluxes that were only used to produce one of the bio-
mass precursors. For example, cytoplasmic acetyl-CoA 
was only used in the model as a precursor of biomass 
(because the model never predicted its mitochondrial 
transport). Thus, the flux of acetyl-CoA synthesis (Ac_
Accoa) was perfectly correlated with biomass synthesis 
(Fig. 3).

We also found correlations between blocks that had 
two main origins. In first case, these correlations were 
compulsory due to the model structure. For example, 
there was an expected negative correlation between the 
glycerol fluxes and the lower part of glycolysis because 
these two pathways diverged from the upper part of gly-
colysis. For the same reason, the flux through the PPP 
was negatively correlated with upper glycolysis. Positive 
correlations were also found between the PPP (Fig.  4a), 
the TCA oxidative branch and the biomass block, which 
could be connected to the synthesis of biomass precur-
sors, such as Erythrose-4-phosphate (E4P), Ribose-
5-phosphate (R5p) and alpha-ketoglutarate (AKG). Other 
correlations were independent of the network structure 
and emerged from the biological data. For example, a cor-
relation was found between the fluxes through PPP and 

acetate synthesis (Acald_Ac, Fig. 4b). This strong negative 
correlation was identified using the whole strain data set 
(r = −0.76, Fig. 4b). This trade-off could be linked to the 
synthesis of NADPH that can be achieved by these two 
pathways. Approximately 60 % of the NADPH demand is 
supplied by the PPP, but this proportion varied between 
95.7 and 18.8 % depending on the strains, independently 
of the total production (Additional file  1: Figure S1). It 
is interesting to note that this trade-off did not appear 
in the model’s null space of possible fluxes, which indi-
cates that this correlation is independent of the network 
matrix and is purely biological.

Because the fluxes were mostly organized in blocks 
(Fig. 3), we decided to use only a subset of fluxes con-
taining one representative flux for each block for fur-
ther analysis. With this subset of 19 fluxes, we studied 
the deviation of each strain from the average for each 
flux. Then, we used a clustering method to classify the 
strains and fluxes as a function of their Euclidean dis-
tance (Fig.  5a). The fluxes that best separated strains 
were the most variable and also had binomial distribu-
tions, indicating very different behaviors across strains 
(Fig. 5b–i). The fluxes of acetate synthesis (Fig. 5h) and 
output (Fig. 5i) could separate one particular cluster of 
eight strains that was mainly characterized by a high 
production of acetate and a small flux through the PPP. 

Fig. 2 Coefficient of variation for the model’s fluxes. The coefficient of variation (ratio of the standard deviation to the mean) of each flux is repre-
sented as a vertical bar. The vertical bars are ordered by metabolic pathways: glycolysis and ethanol synthesis (pink), PPP (dark red), glycerol synthesis 
(light green), acetaldehyde node (green), reductive branch of the TCA (dark blue), oxidative branch of the TCA (blue) and output fluxes (purple)
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Fig. 3 Correlation matrix. Matrix of correlations between the model’s fluxes. The Pearson correlation values between each pair of fluxes are repre-
sented as a gradient of colors from green (−1) to red (+1). The fluxes are ordered by metabolic pathways

a b

Fig. 4 Relationship between fluxes through the PPP and the biomass flux or the acetate synthesis flux. Relationship between the G6P_6Pgl flux 
representative of PPP and biomass flux (a). Relationship between the G6P_6Pgl flux representative of PPP and the flux of acetate synthesis (Acald_
Ac) (b). Each strain is represented as dots, with the color corresponding to the strain’s origin. The Pearson correlation values are indicated at the 
bottom of each graph as the significance of the correlation
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The strain FS2D (Fig. 5k) of this cluster had a small flux 
through the PPP (−73 %), a small flux through both the 
TCA branch (−13 and −23 %) and small production of 
biomass (−15  %) but a high acetate synthesis and out-
put (+72 and +63 %). Similarly, the flux of acetaldehyde 
output predicted by the model highlighted a cluster 
of three strains characterized by a very high produc-
tion of acetaldehyde, of which Clib215_3B strain was a 
good example (Fig.  5l). This strain was mainly charac-
terized by a high acetaldehyde output (+94  %), a high 
reductive branch of TCA (+27  %) and succinate out-
put (+25 %), high glycerol output (+15 %) and a small 
acetate production and output (−61 and −55  %). The 
other fluxes did not allow such a clear separation of 

strains but illustrated small differences in similar global 
distributions.

Interestingly, these two particular clusters were over-
whelmingly composed of strains having one ecological 
origin. The cluster characterized by a high production 
and output of acetate was composed of “Flor” strains, and 
the cluster with high acetaldehyde production was only 
composed of “Bread” strains. To better understand the 
effect of strain origin on flux distribution, we considered 
the mean fluxes by origin (Fig. 5b–i). The acetate synthe-
sis and output fluxes (Fig. 5h, i) were approximately 50 % 
higher for the “Flor” and “American Oak” (Oak) strains 
and approximately 50 and 25 % lower for the Bread and 
Wine strains, respectively. This dichotomous behavior 
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Fig. 5 Clustering of flux deviations. Matrix of deviation from the average for 19 fluxes and all strains (a). Each rectangle of the matrix represents a 
relative deviation index calculated by dividing the deviation between the flux of one reaction for one strain and the average flux for all strains by 
the average flux of the corresponding reaction. Each line corresponds to all relative deviation indexes for one strain. Each column corresponds to the 
relative deviation indexes for one reaction and all strains. The lines and column are ordered with respect to the function of their Euclidian distances, 
which are represented by dendrograms both at the top and the left of the matrix. The distribution of all the relative deviation indexes as well as the 
corresponding color gradient are in the top left of the matrix. The sub-graphs represent the effect of strain origin on the relative deviation index as 
well as the distribution of the corresponding flux for eight selected fluxes (red distribution for fluxes constrained by experimental data, and blue for 
fluxes only predicted by the model) (b–i). Simplified schematic representation of the metabolic network (j–m). The relative deviation index for four 
selected strains of different origins is indicated as a percentage. Only the deviations greater than ±8 % are provided
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explaining the bimodal distribution of these two fluxes 
also presented a significant effect of the ecological origin 
(p  <  0.001 for both fluxes). Similarly, the very long tail 
in the flux distribution of acetaldehyde output (Acald_t) 
can be explained by the “Bread” strains that produce 
approximately 100  % more acetaldehyde that other 
strains (Fig. 5g, p = 0.003). Flux through the PPP (Fig. 5e, 
p < 0.001) and glycerol synthesis (Fig. 5c, p < 0.001) also 
presented significant effects of strain origin while having 
less variability. By contrast, fluxes with high variability 
and that well separated strains, such as the alpha-ketoglu-
tarate output (Fig. 5f ), presented no significant effect of 
strain origin. Thus, there was no link between the extent 
of flux distribution and its contribution to strain origin 
separation.

Thus, this analysis indicated interesting physiologi-
cal differences between strains, some of which were 
related to the ecological origin. To experimentally con-
firm the higher production of acetaldehyde by the bread 
strains, we a posteriori measured the production of 
acetaldehyde for seventeen strains from various ori-
gins and compared the relative variations of produc-
tion with flux prediction (Fig.  6). These experimental 
data confirmed our predictions, with the “Bread” strains 
producing 137.78  ±  5.68  mg  L−1 of acetaldehyde on 
average, while the strains from other origins produced 
59.88 ± 35.51 mg L−1 (p value < 0.001) at the fermenta-
tion time point of 11 g L−1 of CO2 produced.

Moreover, a correlation was also found within groups 
of strains with similar ecological origins (Fig.  4) as well 
as for the proportion of the NADPH demand provided 
by the PPP or acetate synthesis. Indeed, the “Bread” and 
“Wine” strains mainly produced their NAPDH by the 
PPP (approximately 84 and 72  %, respectively), while 
the six strains that predominantly produced NAPDH by 
acetate synthesis were “Flor” strains, with only approxi-
mately 20 % of the NADPH demand produced by the PPP 
(Additional file 1: Figure S1).

Finally, to obtain an integrated vision of flux struc-
turation, we performed a principal component analysis 
(PCA). For this, we selected the same subset of 19 fluxes, 
among which we excluded the fluxes of glycolysis and 
ethanol synthesis on the basis that they were stronger 
but also less variable fluxes, which would therefore give 
them too much importance in the PCA. A final subset 
of 14 fluxes was used to perform the PCA (Fig.  7). The 
first three axes of the PCA explained 41.46, 24.62 and 
12.3 % of the variance. The PCA plan defined by the sec-
ond and third axes was the one that better separated the 
strains according to their origins. The second axis sig-
nificantly separated the “Bread” (+2.37) and the “Oak” 
(−2.4) strains, and the third axis significantly separated 
the “Flor” (+1.84), the “Wine” (+0.67), the “Med_oak” 
(−0.97) and the “Bread” (−1.95) strains. The “Bread” 
strains at the bottom left of this PCA plan were charac-
terized by a high production of acetaldehyde and a small 
production of acetate. The oak strains (“Med_oak” and 
“Oak”) in the bottom right had high production of glyc-
erol and small production of succinate. The “Flor” group 
at the top right had high production of acetate, a small 
flux through the PPP and small production of acetalde-
hyde. This group was almost symmetrically opposed to 
the “Bread” group. The two remaining groups, “Rum” and 
“Wine,” were more central and better separated by the 
plan determined by the two first axes of the PCA. Finally, 
it is interesting to highlight that the fluxes structuring the 
axis were in the same proportion predicted by the model 
and constrained by the experimental data.

Discussion
In this work, we used a constraint-based model of yeast 
fermentative central carbon metabolism to study the 
diversity of flux distribution among 43 strains of differ-
ent origins. We used a whole set of experimental data 
(ethanol, glycerol, succinate, acetate, pyruvate, alpha-
ketoglutarate and biomass production) to constrain the 
model and a FBA approach with minimization of the 
glucose input to predict the distribution of metabolic 
fluxes. This method allowed us to optimize the modeling 
process by using all the available biological information. 
We first considered the variability of the predictions to 

Fig. 6 Comparison between predicted and measured acetaldehyde 
production. Graphical comparison of the acetaldehyde production 
deviation from the average calculated for each origin group between 
predicted (y-axis) and measured data (x-axis). The vertical and horizon-
tal bars represent the standard errors
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determine the confidence of the estimates. Considering 
alternate optimal solutions led us to conclude that the 
DynamoYeast model was very well determined, with only 
small variations in the reductive branch of the TCA due 
to free mitochondrial transport of the involved metabo-
lites (malate, fumarate and succinate). This very low level 
of variability between alternate optimal solutions for a 
given set of constraints was the main advantage of using 
a reduced model. Indeed, the same constraints used with 
a genome-scale model (6th version of the consensus 
model, [41]) led to predicted flux distribution predictions 
with many alternative solutions, some of which were bio-
logically irrelevant (data not shown).

The main objective of this study was to characterize 
the variability of flux distributions between S. cerevisiae 
strains from different origins. We found that this variabil-
ity was strongly pathway-dependent. The glycolysis and 
ethanol synthesis pathways, despite being the stronger 
fluxes, showed almost no variability between strains. In 
contrast, flux through the PPP was the most variable, 
with a coefficient of variation more than two times higher 
than that of other pathways. This high variability of the 
PPP is in accordance with a previous study stressing high 
variability of the specific activity of the first enzyme of 
the PPP, glucose-6-phosphate dehydrogenase, in eleven S. 
cerevisiae strains [42]. This, in addition to the finding that 
the PPP was one of the most variable fluxes in different 
environments [13], suggests high flexibility of this path-
way depending on environmental and genetic factors.

Our study also highlighted several correlations between 
metabolic pathways. The PPP produces around 2/3 of 

the NAPDH demand and displays a strong trade-off with 
the cytoplasmic synthesis of acetate from acetaldehyde 
(Acald_Ac in our model), the other main reaction gener-
ating NAPDH. An indication of a link between these two 
pathways was found in previous studies. For example, in a 
study comparing the flux distributions of S. cerevisiae dur-
ing respiro-fermentative growth in different conditions of 
pH and NaCl concentration, Heyland et al. [43] found an 
inverse variation between the fluxes through acetate pro-
duction and PPP, unfortunately with too few points to test 
for a significant correlation. Predicted fluxes between an 
evolved strain of S. cerevisiae and its ancestor showed a 
similar trade-off: an increased flux thought the PPP and a 
decreased production of acetate in the evolved strain [44].

Interestingly, among the intra-species correlations that 
we identified in this study, some have also previously 
been found when different yeast species were compared. 
The positive correlation between PPP and biomass fluxes 
(which we linked to biomass precursor synthesis) was 
also found in a comparative 13C-flux analysis of seven 
yeast species [26] and of fourteen other hemiascomycet-
ous yeasts [17]. Between these fourteen hemiascomycet-
ous, the proportion of NAPDH demand produced by the 
PPP varied between 60 % for S. cerevisiae and 90 % for P. 
angusta [17]. Similarly, in our work, the mean percentage 
of NAPDH produced by the PPP was 59  % (Additional 
file 1: Figure S1). A higher level of flux through the PPP 
was found for S. cerevisiae in the Blank study compared 
to this work (10 versus 2  %); this discrepancy between 
fluxes predicted by 13C-MFA or FBA is common [12]. 
Another correlation found in our work as in other studies 

a b

Fig. 7 Principal component analysis of the model’s fluxes. Graphical representation of strain fluxes projected on the two plans defined by the three 
first axes of the PCA calculated from 14 predicted fluxes for 43 strains. The strains are represented as dots colored by the function of strain origin. On 
top of each graph is the circle of variables. The red lines correspond to constrained fluxes and the blue lines to predicted fluxes. Plan defined by axis 1 
and 2 of the PCA (a). Plan defined by axis 2 and 3 of the PCA (b)
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was the negative correlation between glycolysis and the 
TCA fluxes, which have been associated with a down reg-
ulation of glycolytic genes [43].

Another issue addressed in this study is the contribu-
tion of strain origin to intra-species metabolic diversity. 
For the variable fluxes, the flux distribution was divergent 
in broadness and could also be mono-, bi- or multimodal, 
indicating dichotomous behavior between strains. We 
could explain these different patterns of distribution by 
strain origin peculiarities. For example, the long tail of 
the acetaldehyde output distribution can be explained 
by the four “Bread” strains that produce twice as much 
acetaldehyde (Fig.  5g) and the bimodal distribution of 
the production and output of acetate by the contrasted 
behavior of the “Flor” and “Bread” strains. Further, using 
the predicted fluxes rather than only the experimental 
data helps to distinguish the strains according to their 
origins (Additional file 1: Figure S2). Indeed, among the 
five fluxes (G6p_6pgl, Acald_t, Akg_t, Acald_Ac, Ac_t) 
that best distinguished strains from each other (especially 
the “Bread” and “Flor” strains), two were only accessi-
ble by the model (G6p_6pgl, Acald_t), which highlights 
the potential of the flux analysis approach. Interestingly, 
some fluxes, such as flux through the PPP, were by them-
selves able to separate strains by origin.

Such knowledge on the most flexible fluxes and strain-
dependent flux variability could be very useful for meta-
bolic engineering strategies aimed at rerouting metabolic 
fluxes. Numerous studies [44–54] have attempted to 
modify yeast flux distributions using metabolic or evo-
lutionary engineering approaches or hybridization to 
exploit natural diversity for various biotechnological 
applications. Our study shows almost no diversity in the 
flux distributions of glycolysis or ethanol synthesis, sug-
gesting strong constraints on these fluxes, either evo-
lutionary or metabolic. By contrast, the fluxes through 
glycerol synthesis [54–57] or the PPP [42, 44] were more 
flexible, which makes them more interesting targets to 
redirect metabolic fluxes. In addition, the availability of 
strain-specific maps of metabolic flux distribution will 
provide a framework for the selection of the most rele-
vant strains for metabolic engineering strategies.

Conclusion
Overall, this work highlights the potential of flux analy-
sis to identify the most variable and robust nodes of cen-
tral carbon metabolism within a species and to provide 
information on the metabolic or evolutionary constraints 
that shape flux distribution. This knowledge will help to 
identify relevant targets and yeast strains for metabolic 
engineering. In addition, the availability of whole genome 
sequences for the strains used in this study offers a frame-
work to decipher the links between flux distribution and 

strain genotypes. In particular, the finding of a strain 
origin effect on the distribution of various fluxes opens 
the way for flux quantitative trait loci (QTL) detection 
(fQTL) to elucidate the genetic basis of flux distribution.

Methods
Strains and culture conditions
The 43 S. cerevisiae strains of six different ecological ori-
gins (4 “Bread,” 7 “Rum,” 16 “Wine,” 9 “Flor,” 3 “Medoak” 
and 4 “Oak”) used in this study are listed in Additional 
file  2: Table S1. These strains were conserved at −80  °C 
and transferred to YPD agar plates 48 h before fermenta-
tion. Initial cultures (12 h, in 50 ml YPD medium, 28 °C) 
were used to inoculate fermentation at a density of 106 
cells/ml. Fermentation was carried out in synthetic MS 
medium, which contained 240  g/L sugars (equimolar 
mixture of glucose and fructose), 6 g/L malic acid, 6 g/L 
citric acid and 200  mg/L nitrogen in the form of amino 
acids (148  mg  N/L) and NH4Cl (52  mg  N/L), at pH 3.5 
(5). Ergosterol (1.875 mg/L), oleic acid (0.625 mg/L) and 
Tween 80 (0.05  g/L) were provided as anaerobic growth 
factors. Fermentation took place in 1.1-liter fermentors 
equipped with fermentation locks to maintain anaerobio-
sis, at 28 °C, with continuous magnetic stirring (500 rpm). 
CO2 release was followed by automatic measurements of 
fermentor weight loss every 20 min. The amount of CO2 
released allowed us to monitor the progress of the fer-
mentation. Samples were harvested for further analysis 
when the released CO2 reached approximately 11 g. The 
dry weight of the yeast was measured by filtering 50 mL of 
culture through a 0.45-mm-pore Millipore nitrocellulose 
filter, which was washed twice with 50 mL distilled water 
and dried for 24  h at 105  °C. Metabolites in the super-
natant (acetate, succinate, glycerol, alpha-ketoglutarate, 
pyruvate and ethanol) were analyzed by high-pressure liq-
uid chromatography [36]. Acetaldehyde production was 
determined with an enzymatic UV method [58].

Fermentation was carried out in duplicate spread over 
various fermentation blocks. Data (six metabolites, bio-
mass) were first normalized by the released CO2. We 
then used a linear mixed model (Rstudio, nlme package) 
to correct measures for “block” effects, and the average 
values between the two replicates were calculated. From 
these normalized and corrected data, we recalculated the 
biomass and metabolite concentrations corresponding to 
11 g/L of CO2.

Model
Metabolite concentrations (in mmol  ml−1) and dry 
weight (g  L−1) were used to constrain DynamoYeast, a 
previously developed dedicated constraint-based model 
of yeast fermentative central carbon metabolism [9]. 
This model is composed of three compartments: the 
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cytoplasm, mitochondria and extracellular medium, and 
includes 61 metabolites (Additional file  2: Table S2 for 
full name and abbreviations) and 68 reactions (Additional 
file 2: Table S3). For each of the 43 strains, we used the 
corrected metabolite concentrations to constrain the cor-
responding output flux of the model and the measured 
dry weight to constrain the flux of biomass (Additional 
file  2: Table S1). We used the experimental measures 
+2.5 and −2.5 % at the upper and lower flux boundaries, 
respectively. Then, we performed a flux balance analysis 
(FBA) minimizing the flux of glucose input (Glc_t) to 
obtain the flux distribution through the metabolic net-
work [9]. In contrast to other standard constraint-based 
methods that compute flux distribution based on the 
derivation of mass data, here we directly computed mass 
distribution, as in Celton et al. [9].

We considered that all sugars were glucose (instead 
of glucose and fructose) for the modeling approach, as 
this assumption did not impact the flux predictions. 
For all strains, we used the biomass composition pre-
viously determined for the EC1118 strain [9] and set 
the cytosolic isocitrate dehydrogenase reaction (IDP2, 
YLR174W), the mitochondrial glutamate dehydrogenase 
reaction (GDH2, YDL215C) and the futile cycle around 
glycerol [9] to 0.

All predictions were performed with Matlab R2010b. 
The flux balance analysis (FBA) was performed with the 
“optimizeCbModel” function from the cobra toolbox [59] 
and the GLPK solver. The evaluation of the number of 
alternative solutions was done with the “enumerateOpti-
malSolution” algorithm [40] from a model where all input 
and output fluxes had been constrained by their exact 
predicted value from the FBA optimization.

Statistical analysis
For each strain, we obtained a prediction of the flux dis-
tribution through the metabolic network. However, the 
predicted glucose uptake was different for each strain. To 
compare flux distributions between strains, we normal-
ized each flux to the specific glucose uptake in the cor-
responding strain and expressed it as a percentage. We 
calculated the coefficient of variation for each flux: the 
standard deviation divided by the mean flux of all strains.

On a subset of 19 fluxes, we calculated the relative 
deviation from the average 

(

Fluxi−Fluxmean

Fluxmean

)

, which gave 
an idea of how far a given strain was from the average 
distribution. To analyze the effect of strain origin on 
selected relative deviations, we used a linear model with a 
fixed effect of origins and ANOVA.

Principal component analysis of flux values was per-
formed with fourteen fluxes that were representative of 
the entire model’s network, with the exception of the 
glycolysis and ethanol synthesis fluxes. All analysis and 

graphical representations were performed with RStu-
dio [60] and with the following packages: “FactoMineR,” 
“corrplot,” “gplots” and “XML.” The graphical represen-
tations were later modified with Inckscape (http://www.
inkscape.org) for visual ameliorations.
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