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Abstract 

Background: Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the 
growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the 
maximum achievable cell density.

Results: A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cul-
tured on glucose as carbon and energy source. The model considers the main metabolic routes of glucose assimila-
tion (fermentation to ethanol and respiration) and the occurrence of inhibition due to the accumulation of both 
ethanol and other self-produced toxic compounds in the medium. Model simulations reproduced data from classic 
and new experiments of yeast growth in batch and fed-batch cultures. Model and experimental results showed that 
the growth decline observed in prolonged fed-batch cultures had to be ascribed to self-produced inhibitory com-
pounds other than ethanol.

Conclusions: The presented results clarify the dynamics of microbial growth under different feeding conditions and 
highlight the relevance of the negative feedback by self-produced inhibitory compounds on the maximum cell densi-
ties achieved in a bioreactor.
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Background
Microbial cell populations growing in a closed vessel 
(batch culture), under suitable environmental and sub-
strate conditions typically show an initial exponential 
proliferation followed by a decline in growth rate and 
transition to stationary phase [1]. Such dynamics, differ-
ent from Malthus’ law prediction, have been essentially 
ascribed to either exhaustion of nutrients according to 
the Monod model [2], or accumulation of toxic com-
pounds in the culture medium [3], both affecting the 

maximum achievable cell density under the given condi-
tions. Accordingly, a general model of microbial popula-
tion growth has to include both the effects of nutrients 
and the dynamics of changing environmental conditions. 
Such model should necessarily consider the main meta-
bolic routes of nutrients assimilation and the possible 
occurrence of inhibition phenomena. These issues are 
addressed here on the yeast Saccharomyces cerevisiae, 
which is a reference model biological system [4] and a 
microorganism of major biotechnological importance 
[5–7].

Metabolic shift between respiration and fermentation
Glucose catabolism of the yeast S. cerevisiae may fol-
low two different pathways: aerobic respiration to CO2 
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and H2O or fermentation to ethanol. Furthermore, S. 
cerevisiae is a glucose-sensitive yeast [8], which means 
that, under aerobic conditions, it also produces ethanol 
when sugar concentration is high. This phenomenon 
has been described and explained in different ways over 
the years: Crabtree effect [9], or glucose effect [10] (with 
these two terms sometimes used as synonyms), and over-
flow metabolism determined by a respiratory bottleneck 
[11–13]. Furthermore, by analogy to a comparable phe-
nomenon in bacteria, the term catabolite repression [14] 
was also used for the effect of glucose in yeast metabo-
lism [15].

The overflow metabolism hypothesis attributes aero-
bic fermentation to the saturation of a limited respira-
tory capacity leading to an overflow reaction at pyruvate 
level [11]. Such effect is observed within seconds after 
exposure to high glucose concentrations and has been 
distinguished from more long-term effects concerning 
repression of respiration [8]. The latter has been reported 
to involve different signal transduction pathways acti-
vated by levels of either extracellular glucose or intracel-
lular yet un-identified metabolites [16].

Growth inhibition and limits to cell density
Cell densities higher than those of a typical batch cul-
ture can be obtained if the intrinsic nutrient limitation 
of closed systems is circumvented by performing the so-
called “extended batch” or “fed-batch” culture [17]. The 
yeast industry has historically developed the aerated fed-
batch process to produce baker’s yeast [18], while more 
recently, the same cultivation mode has been employed 
to obtain high levels of foreign proteins concentrations 
with recombinant strains [19].

A typical fed-batch is accomplished when the batch 
culture is prolonged by a continuous or intermittent sup-
ply of fresh medium to the vessel. In these cases, micro-
bial cell density may achieve values higher than 100  g 
d.w. l−1 [20]. The theoretical maximum cell density in a 
microbial culture due to spatial constraints alone has 
been calculated to be 400  g d.w. l−1 [21], but consider-
ing that culture fluidity is lost when the dry cell weight 
is higher than 220 g d.w. l−1, a maximum cell density of 
200  g d.w. l−1 has been considered reasonable [22]. It 
has been widely reported that maximum cell densities 
obtained in fed-batch cultures are generally lower than 
those expected, and this has been attributed to differ-
ent causes: oxygen transfer limitation, accumulation of 
toxic by-products, increased medium viscosity and ion 
conductivity, and generation of CO2 and heat [20–23]. In 
other words, a microbial population cannot support an 
indefinite growth due to a finite environmental carrying 
capacity, i.e. as the population approaches the environ-
mental limits, the growth declines and eventually stops.

In the case of S. cerevisiae cultured in aerated fed-batch 
reactors, growth rate decline has been mostly related to 
oxygen transfer limitations [24] especially in large bio-
reactors [25], while high medium viscosity, low pH and 
temperatures have been considered to explain the con-
straints observed in high-cell-density cultivations of 
recombinant strains [26]. However, there is also experi-
mental evidence that yeast strains show reduced pro-
liferative capacity despite the maintenance of optimal 
cultural conditions and oxygen availability [27–29].

Mathematical models of microbial growth
Besides the experimental work, mathematical models 
have been proposed to describe the dynamic processes 
of microbial populations. The occurrence of a station-
ary level in microbial growth has been attributed in 
mathematical models to either a generic overcrowding 
effect [30] or explicit nutrient exhaustion as represented 
by Monod kinetics (for a review see [31]). Some mod-
els based on Monod’s formulation also considered the 
effect of either biomass concentration [32] or products 
[33] as growth inhibiting factors. More recently, explicit 
representations of yeast metabolism have been taken 
into account to model the aerobic fermentation process. 
In particular, several process-based models have been 
implemented based solely on the “overflow” hypothesis, 
i.e. a limited respiratory capacity [11, 12, 34, 35], while in 
other cases both overflow and repression of respiration 
have been taken into account [36]. Moreover, Hanegraaff 
et  al. [37] proposed a mechanistic model of respiro-fer-
mentative pathways associated with different responses 
of multiple types of glucose carriers.

A different modelling approach is that of cybernetic 
models [38–41] which assume that microorganisms opti-
mize the use of available resources choosing the most 
convenient metabolic pathway. A recent approach is that 
of systems biology aiming to combine genomic, biochem-
ical, and physiological information [42, 43]. This class of 
models has been specifically conceived to integrate mas-
sive amount of experimental data in order to calculate 
the concentration levels of all components of metabolic 
pathways at specific steady states [44]. However, given its 
level of detail this approach does not allow to represent 
the dynamics at population level including feedbacks 
from environmental conditions.

In this work, we propose a new process-based model, 
following the principles of System Dynamics [45] accord-
ing to which a complex system can be represented by 
means of flows, stocks and feedback loops. The occur-
rence of negative feedbacks by self-produced inhibitory 
compounds has been demonstrated to be a basic process 
able to explain the onset of growth limits involved in spe-
cies coexistence and pattern formation in plants [46–48]. 



Page 3 of 14Mazzoleni et al. Microb Cell Fact  (2015) 14:109 

Inspired by these modelling concepts, a new model of 
microbial cell growth has been developed to describe S. 
cerevisiae dynamics in a bioreactor. The model is charac-
terised by an explicit formulation of both the metabolic 
shift between respiration and fermentation, represented 
as a function of the glycolysis process, and the self-
inhibition of cell growth induced by the release of toxic 
by-products.

Model description
The model here presented describes the growth dynam-
ics of the yeast S. cerevisiae cultured in a bioreactor, 
under aerobic conditions, with glucose as carbon and 
energy source. Figure 1 shows a schematic diagram of the 
implemented processes, providing a simplified represen-
tation of the complex network of glucose metabolism in 
aerobic conditions.

Glucose (G) is added to the growth medium according 
to the bioreactor feeding process. Glucose uptake is fol-
lowed by the glycolytic process, which produces differ-
ent products (P), from glucose-6-phosphate to pyruvate. 
These products can follow two distinct pathways for the 
construction of new cellular material (CM), either respira-
tion or fermentation. Ethanol (E) produced by fermenta-
tion can also be used, instead of glucose, as carbon source 
for the respiratory pathway.

The main feature of the model is the inclusion of an 
inhibitor (I), representing growth-associated by-prod-
ucts, which accumulates in the growth medium. Ethanol 
and the inhibitor are assumed to separately exert a nega-
tive feedback on cell growth in a concentration-depend-
ent way.

The second essential assumption is the key role of the 
glycolytic pathway in the regulation of yeast cell metabo-
lism. High levels of glycolytic products are assumed to be 

responsible for (1) the activation of aerobic fermentation 
due to overflow metabolism, (2) repression of respiration 
(“glucose effect”), (3) accumulation of reserve materials 
(R), and (4) induction of mortality with accumulation of 
dead cells (D).

The setup of the glucose supply to the reactor (Feeding) 
is defined according to the different experimental set-
tings. Metabolic processes listed in Table 1 (Uptake, Res-
pirationP, RespirationE, Fermentation and Accumulation) 
are modelled based on Michaelis–Menten kinetics with 
respect to a given substrate and with a first order depend-
ency on the active biomass pool (B = P + CM) modified 
according to the model assumptions made to represent 
S. cerevisiae physiology. The uptake of glucose (Uptake) 
and the consequent formation of glycolytic intermedi-
ates are also limited by product (P) saturation and the 
inhibitory effect of ethanol accumulation in the growth 
medium [49]. The model also allows the setting of a lag-
phase term on the glucose uptake in order to account for 
the adaptation of yeast cells after inoculum into the bio-
reactor [12]. The respiration fluxes (RespirationP, Respi-
rationE) are inhibited by the extracellular accumulation 
of both ethanol and the inhibitor, and also by elevated 
intracellular concentrations of glycolytic intermediates 
(glucose effect) [16]. Similarly, the fermentation flux 
(Fermentation) is inhibited by ethanol and the inhibitor, 
while it is only activated at elevated intracellular concen-
trations of glycolytic products (metabolic overflow [11]). 
Accumulation of reserve molecules (mainly glycogen) is 
activated at high intracellular concentrations of glycolytic 
intermediates (mainly glucose-6-phosphate [50]) and is 
also limited by product (R) saturation.

Moreover, the production of the inhibitory compound 
I (Secretion) is assumed to be related to anabolic path-
ways hence it is expressed as a proportion of the respira-
tion and fermentation fluxes. Cell death is assumed to be 

Dead cells 
(D) 

Glucose 
(G) 

C metabolites 
(CM) 

1 
2 

4 

5 6 8 

3a 

3b 

 Ethanol 
(E) Inhibitor 

( I ) 

ENVIRONMENT 
YEAST CELLS 

6 

Reserves 
(R)

7 

Glycolysis 
products 

(P)

Fig. 1 Model diagram of yeast growth. Simplified cell metabolism 
with explicit representation of the major metabolic pathways. 1 
Glucose uptake; 2 respiration; 3a fermentation; 3b ethanol production 
by fermentation; 4 ethanol respiration; 5 secretion of inhibitory com-
pounds; 6 inhibitory effects; 7 reserves accumulation; 8 cell death.

Table 1 Model processes

All symbols are described in Tables 2, 3 and 4.

Equation

Feeding = cF · F0 · exp(µ · (t − tF ))

Uptake = vG ·
[G]

kG+[G]
· B ·

(

1− [P]
[P]max

)

· (1− nE ) · lag

RespirationP = vRP ·
[P]

kRP+[P]
· B · (1− nE) · (1− nI) · ge

Fermentation = vF ·
[P]

kF+[P]
· B · (1− nE) · (1− nI) ·mo

RespirationE = vRE ·
[E]

kRE+[E]
· B · (1− nE ) · (1− nI) · ge

Accumulation = vA ·
[P]

kA+[P]
· B ·

(

1− R
Rmax

)

·mo

Secretion = ρ · (ηRP · RespirationP + ηRE · RespirationE + ηFP · Fermentation)

DeathP = d · δ · P;
DeathR = d · δ · R;
DeathCM = d · δ · CM
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induced by elevated concentrations of glycolytic products 
(mainly glucose-6-phosphate [51, 52]) and is modelled as 
a loss (DeathP, DeathCM and DeathR) of the cellular com-
ponents P, CM and R respectively.

Based on the above model description, the following 
mass balance equations have been written:

The mathematical equations of this model are 
described in detail in Tables 1 and 2. The complete list of 

(1)
dG

dt
= Feeding −Uptake

(2)

dP

dt
= ηG ·Uptake − RespirationP − Fermentation

− Accumulation− DeathP

(3)
dE

dt
= ηFE · Fermentation− RespirationE

(4)

dCM

dt
= ηRP · RespirationP + ηRE · RespirationE

+ ηFP · Fermentation− Secretion− DeathM

(5)
dR

dt
= ηA · Accumulation− DeathR

(6)
dI

dt
= Secretion

(7)
dD

dt
= DeathP + DeathM + DeathR.

state variables and parameters along with their units and 
simulation values can be found in Tables 3 and 4.

Results
Model simulations were compared to classic experiments 
of yeast growth in both batch [53] and fed-batch cultures 
[12], and new experiments carried out in an aerated fed-
batch bioreactor with two strains belonging to the CEN.
PK family [69] of the yeast S. cerevisiae.

Simulation of a batch culture
The model has been used to simulate the aerobic batch 
culture of S. cerevisiae LBG H 1022 strain growing on 
glucose as carbon and energy source in a classical experi-
ment by von Meyenburg [53]. Figure  2 shows the three 
main variables (cell mass, glucose and ethanol concen-
tration) monitored during the entire time course of the 
batch run, and the corresponding simulations. The exper-
iment performed by von Meyenburg can be considered 
as a typical aerated batch culture of a glucose-sensitive 
yeast. In these conditions, glucose was initially fermented 
as shown by the accumulation of ethanol in the medium. 
Once glucose was exhausted (approx. after 10 h), a sec-
ond exponential growth phase was observed, corre-
sponding to the use of ethanol as substrate, according to 
the typical diauxic yeast growth in aerobic batch culture 
(Fig. 2).

The calibrated model produced a very good agree-
ment between the experimental data and the simulated 
curves (Microbial mass R2 = 0.984; Glucose R2 = 0.987; 
Ethanol R2 = 0.947) describing yeast proliferation during 

Table 2 Symbols used in the model equations

All other symbols are described in Tables 3 and 4.

Description Formula

Initial feed rate
F0 =

{

0, t < tF
MF ·µ
cF ·yR

, t ≥ tF

Glucose concentration [G] = G
V

Active metabolite mass B = P + CM

Glycolysis products concentration [P] = P
(B+R)·c

Ethanol negative feedback nE = σE ·
[E]

[E]max

Lag phase lag = 1− l1
1+l2·exp(l3·t)

Inhibitor negative feedback nI = σI ·
[I]

[I]max

Glucose effect ge = 1
1+a·exp(b·[P])

Metabolic overflow mo = 1− ge

Ethanol concentration [E] = E
V

Maximum reserves Rmax = (B + R) rmax

Death switch
d =

{

0, [P] ≤ τ

1, [P] > τ

Medium volume in the reactor
V(t) =

{

V0, t < tF
MF
cF ·yR

· exp(µ · (t − tF )), tF ≤ t ≤ tEND
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the diauxic growth in this aerobic batch culture. In such 
conditions (short term culture), no evidence of inhibitory 
effect exerted by either ethanol or self-produced inhibi-
tors was observed.

Simulation of a fed‑batch culture
The aerobic fed-batch culture of S. cerevisiae CBS 8066, 
as described by Pham et  al. [12], has been simulated 
(Fig. 3). The authors employed a two phases feeding strat-
egy consisting of a first exponentially increasing feeding 
(SFR value 0.3  h−1, coinciding with the specific popula-
tion growth rate) of 3 h, followed by a constant feeding. 
In the early phase of feeding (1.8 h) glucose uptake was 
lower than expected due to adaptation of yeast cells to 
the culture conditions as reported by the authors them-
selves. In this adaptation phase, glucose was not con-
sumed and accumulated in the medium. Then, growth 
accelerated and glucose drastically decreased (Fig.  3, 
middle panel). Ethanol accumulation stopped due to 
ethanol uptake (Fig. 3, lower panel). The switch between 
glucose and ethanol consumption appeared without any 
visible diauxic lag phase in the growth profile. Finally, 
when ethanol was completely depleted (8 h), the growth 
rate slightly decreased being sustained only by the glu-
cose feeding (Fig. 3, upper panel).

With the exception of some underestimation of the 
maximum level of ethanol concentration, the model was 
able to fit the experimental data at very significant levels 
(Microbial mass R2 = 0.992; Glucose R2 = 0.901; Ethanol 
R2 = 0.943). In this study case, neither experimental data 

nor simulation results showed evidence of growth decline 
related to any inhibitory effect.

Fed‑batch cultures of CEN.PK strains
Experimental and simulation results of two aerobic fed-
batch cultures of the S. cerevisiae CEN.PK113-7D and 
CEN.PK2-1C strains are shown in Figs.  4 and 5. Both 
experiments were performed starting from a batch phase 
followed by an exponentially increasing glucose feeding 
at a SFR value of 0.16 h−1.

In the case of the prototroph S. cerevisiae CEN.PK113-
7D strain, the typical diauxic growth was observed dur-
ing the batch phase with related glucose and ethanol 
dynamics (Fig.  4). Feeding started after 17  h of batch 
and yeast growth proceeded sustained by a predomi-
nant respiratory catabolism of both glucose and ethanol. 
During the early phases of feeding (up to 33 h) cell mass 
increased following the imposed SFR value as expected, 
and no residual glucose was detected in the culture 
medium. Then, the mass profile started to move away 
from the ideal one (dotted line in Fig.  4, upper panel) 
showing a progressive reduction of the actual growth rate 
if compared to the constant SFR. At the same time, etha-
nol began to be detected (Fig.  4, lower panel) and soon 
afterwards, glucose started accumulating in the culture 
medium (Fig. 4, middle panel). A maximum cell density 
of about 100 g l−1 was achieved after 40 h of cultivation, 
then cell density diminished due to the culture dilution 
determined by the maintenance of feeding to the reactor 
coupled with the reduced population growth capability. 

Table 3 State variables initial values and simulation setup parameters

a von Meyenburg [53]; Fig. 2.
b Pham et al. [12]; Fig. 3.
c Figure 4.
d Figures 5, 6 and 7.

Symbol Description Unit LBG H 1022a CBS 8066b CEN.PK113‑7Dc CEN.PK2‑1Cd

G0 Glucose initial value g 9 0 20 20

E0 Ethanol initial value g 0.1 0 0 0

P0 Glycolysis products initial value g 5 × 10−5 5 × 10−5 5 × 10−5 5 × 10−5

CM0 Carbon metabolites initial value g 0.1 7 0.023 0.022

I0 Inhibitor initial value g 0 0 0 0

R0 Reserve compounds initial value g 0 0 0 0

D0 Dead cells initial value g 0 0 0 0

t0 Time of simulation start h 3 0 0 0

tF Time of feeding start h – 3.2 17 15

tEND Time of simulation end h 21 13 49 31; 40; 48

cF Glucose concentration in feeding solution g l−1 – 100 500 500

MF Cell mass at beginning of feeding g – 3.66 3.66 4.52; 4.14; 4.14

μ Feeding rate h−1 – 0.3 0.16 0.1; 0.16; 0.2

yR Maximum biomass yield on glucose – – 0.1 0.5 0.5
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At the end of the fed-batch cultivation (50  h), a 30% of 
the total yeast population resulted non-viable in accord-
ance to the simulation (data not shown).

A very good agreement between the experimental data 
and simulation curves was observed in this case as well 
(Microbial mass R2 = 0.991; Glucose R2 = 0.885; Ethanol 
R2 = 0.934). This result was achieved only if the effect of 
the negative feedback by the inhibitor was considered in 
the simulations (see difference between dotted and con-
tinuous lines in Fig. 4).

Also in the case of the auxotroph S. cerevisiae strain 
CEN.PK 2-1C (Fig.  5) the model was capable to repro-
duce a highly significant fitting with the experimental 
data (Microbial mass R2  =  0.981; Glucose R2  =  0.951; 
Ethanol R2  =  0.952). The profiles of cell mass, resid-
ual glucose and ethanol during both the batch and the 
feeding phases were similar to those of the prototroph 
(Fig. 4). However, an earlier (27 h) detachment from the 
ideal trend of cell mass was observed and cell density was 
limited to a maximum value of 30 g l−1 at the end of the 

Table 4 Model calibrated parameters with description and simulation values

a von Meyenburg [53]; Fig. 2.
b Pham et al. [12]; Fig. 3.
c Figure 4.
d Figures 5, 6 and 7.

Symbol Description Unit Calibration  
starting value

Calibrated values

LBG H 1022a CBS 8066b CEN.PK113‑7Dc CEN.PK2‑1Cd

vG Maximum uptake rate h−1 3.64 [54] 3.3 5.1 5.8 5.8

kG Uptake saturation constant g l−1 0.18 [55] 0.2 0.2 0.27 0.27

ηG Uptake efficiency P/G – 0.92 [56] 0.76 0.76 0.86 0.64

vRP Maximum glycolysis products respiration 
rate

h−1 0.475 [57] 1.5 0.67 1.0 0.83

kRP Glycolysis products respiration saturation 
constant

g l−1 0.033–0.035 [58] 0.24 0.21 0.24 0.18

ηRP Respiration efficiency CM/P – 0.6 [56] 0.80 0.80 0.80 0.73

vF Maximum fermentation rate h−1 11.8 [57] 3.3 4.17 2.6 6.57

kF Fermentation saturation constant g l−1 0.5 [59] 0.13 0.18 0.14 0.16

ηFE Fermentation efficiency E/P – 0.47 [60] 0.595 0.80 0.60 0.61

ηFP Fermentation efficiency CM/P – 0.09 [61] 0.13 0.16 0.20 0.10

vRE Maximum ethanol respiration rate h−1 0.19 [11] 0.20 0.14 0.20 0.11

kRE Ethanol respiration saturation constant g l−1 0.1 [13] 0.12 0.12 0.15 0.15

ηRE Respiration efficiency CM/E – 0.68 [62] 0.65 0.55 0.80 0.80

vA Maximum accumulation rate h−1 0.2 (Arbitrary) 0.2 0.2 0.2 0.3

kA Accumulation saturation constant g l−1 0.05 (Arbitrary) 0.05 0.05 0.05 0.03

ηA Accumulation efficiency R/P – 0.2 (Arbitrary) 0.2 0.2 0.2 0.2

rMAX Maximum reserves/cell mass ratio – 0.25 [63] 0.3 0.3 0.3 0.3

δ Death rate h−1 0.017–0.032 [27] 0.05 0.05 0.05 0.1

τ Death threshold g l−1 0.6 (Arbitrary) 0.6 0.6 0.6 0.6

ρ Secretion rate h−1 0.01 (Arbitrary) 0.01 0.01 0.01 0.02

σI Sensitivity to inhibitor NF – 1.0 (Arbitrary) 1.0 1.0 1.0 1.68

σE Sensitivity to ethanol NF – 1.4 [49, 64, 65] 1.4 1.4 1.4 1.4

c Cell volume/dry weight ratio l g−1 0.01 [66] 0.01 0.01 0.01 0.01

a Metabolic switches calibration parameter – 2.0 × 10−4 (Arbitrary) 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4

b Metabolic switches calibration parameter l g−1 30 (Arbitrary) 30 30 30 30

l1 Lag phase calibration parameter – 0.58 (Arbitrary) – 0.58 – –

l2 Lag phase calibration parameter – 2.0 × 10−5 (Arbitrary) – 2.0 × 10−5 – –

l3 Lag phase calibration parameter h−1 5.8 (Arbitrary) – 5.8 – –

[P]MAX Glycolysis products maximum concentra-
tion

g l−1 1 [67, 68] 1 1 1 1

[E]MAX Ethanol maximum concentration g l−1 100 [65] 100 100 100 100

[I]MAX Inhibitor maximum concentration g l−1 1 (Arbitrary) 1 1 1 1
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fed-batch run (40 h). In this case, a 50% of the total yeast 
population resulted non-viable (data not shown).

Model validation and application
Further experiments with the same CEN.PK 2-1C strain 
were performed at different SFR values (0.1 and 0.2 h−1). 
These experiments represent a strong validation of 
the model since a highly significant fitting of cell mass 
(R2 = 0.983) between experimental data and simulations 
was maintained under all the examined feeding condi-
tions (Fig. 6).

Moreover, an additional simulation was performed 
to assess feeding conditions that could avoid the switch 
to a fermentative metabolism during the fed-batch 
phase, while keeping high biomass yields. Such goal was 
achieved by adjusting the reactor feeding according to 
a logistically decreasing specific growth rate (μ*) used 
as SFR. This theoretical feeding profile was used to set 
a new fed-batch experiment with S. cerevisiae CEN.PK 
2-1C strain.

Resulting experimental data overlapped the simulation 
curves previously obtained by the model simulation for 
all the considered variables (biomass, glucose and etha-
nol) (Fig. 7).

Discussion
The mathematical model presented has been developed 
to simulate yeast growth on glucose as carbon and energy 
source in aerated batch and fed-batch cultures, and it is 
based on two main assumptions. First, a central meta-
bolic hub is assumed to regulate (1) the shift between the 
respiratory and fermentative pathways and (2) cell death. 
Second, self-inhibiting by-products and ethanol are 
assumed to act as concentration-dependent inhibitors of 
cell growth.

It is well known that pyruvate plays a central role in 
yeast metabolism [70], representing the starting point 
of the major metabolic pathways deriving from glucose 
uptake, hence crucial for the distribution of metabolism 
between respiration and fermentation [71, 72]. When 
glucose uptake rate increases due to its high availability, 
but the rate of oxidative pyruvate consumption is lim-
ited by the respiratory bottleneck [11], an overflow of 
pyruvate occurs leading to fermentation and ethanol 
production. Moreover, the “glucose repression effect” 
on respiration involves several signal transduction path-
ways activated by intracellular levels of yet un-identified 
metabolites deriving from glucose uptake [16]. Recent 

Fig. 2 Measured vs. simulated yeast growth reproducing von Meyen-
burg [53] experiment. Time series of measured microbial mass (times 
symbol), glucose (filled circle) and ethanol (open circle) data vs. model 
simulations (continuous lines).

Fig. 3 Measured vs. simulated yeast growth reproducing Pham 
et al. [12] experiment. Time series of measured microbial mass (times 
symbol), glucose (filled circle) and ethanol (open circle) data vs. model 
simulations (continuous lines). Dashed vertical lines represent the 
change from exponential to linear glucose feeding regime.
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studies reported that high levels of sugars in the cul-
ture medium induce cell death accompanied with the 
production of reactive oxygen species (ROS) and DNA/
RNA degradation in both animals [73, 74] and yeasts 
[51]. Furthermore, Granot and Dai [52] demonstrated 
that glucose and fructose phosphorylation (the first steps 
of glycolysis) in yeast cells is essential to activate sugar 
induced cell death.

Taking into account the abovementioned findings, 
the model attributes the role of central metabolic hub 
to pyruvate and/or other intermediate metabolites pro-
duced along the glycolytic pathway (collectively repre-
sented by the variable P), which at high concentrations 
progressively trigger the activation of the fermentative 
pathway (“overflow metabolism”), the repression of respi-
ration (“glucose effect”) and finally cell death.

Usually, fermentation is described as less efficient than 
respiration because it produces less ATP per mole of glu-
cose consumed [75] rising the “apparent paradox” [71] 
of cells switching to the less efficient aerobic fermenta-
tion in the case of overflow metabolism. According to 
our model, it can be speculated that overflow metabolism 
may represent an escape strategy to avoid accumulation 

of intracellular sugars up to toxic levels, with fermenta-
tion ensuring the necessary lowering of intracellular sug-
ars concentration.

The P-driven metabolic shift implemented in the model 
was perfectly capable to describe yeast behaviour both 

Fig. 4 Measured vs. simulated CEN.PK prototroph strain growth in 
fed-batch experiment. Time series of measured microbial mass (times 
symbol), glucose (filled circle) and ethanol (open circle) data vs. model 
simulations (continuous lines). Dashed vertical lines represent the 
beginning of exponential feeding. Dotted lines represent simulation 
results without inhibitor I negative feedback.

Fig. 5 Measured vs. simulated CEN.PK auxotroph growth in fed-
batch experiment. See Fig. 4 for legend. Note the different scaling of 
plot axes.
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in batch and fed-batch cultures. In the batch culture 
reported in Fig. 2, the initial glucose concentration in the 
medium was high and fermentation was the only pos-
sible metabolism at the beginning of cultivation. Then, 
when the glucose level dropped, cells resumed the res-
piratory metabolism and a second phase of growth was 
observed at the expense of ethanol, showing the typi-
cal diauxic growth. In short, fed-batch cultures (Fig.  3) 
after the initial fermentative phase induced by the excess 
of glucose in the medium, the cell population con-
stantly increased growing at a µ value very close to the 
specific feeding rate (SFR), without any production of 
ethanol or glucose accumulation in the medium. Differ-
ently, in extended fed-batch cultures (Figs. 4, 5), despite 
the optimal conditions of both aeration and nutrition in 
the bioreactor, after several hours of feeding (about 18 
and 12 h for CEN.PK 113-7D and CEN.PK2-1C strains, 
respectively) the growth rate started to decline. In these 
experiments, the sequential accumulation of ethanol and 
glucose occurred after the start of growth decline. This 
implies that the complete metabolic shift to fermentation 

was a consequence rather than the cause of the observed 
reduced growth performance. The model tackles this 
phenomenon by representing the secretion of a growth-
linked inhibitory compound, which accumulates in 
the culture medium thus affecting the growth rate. It is 
worth noticing that, in the performed experiments, the 
given SFR was lower than the critical value determined 
for the CEN.PK strains [27], which should have produced 
a specific growth rate µ equal to the imposed SFR [76] 
and neither glucose nor ethanol should have accumulated 
in the medium. Simulations confirmed that population 
growth would continue according to the imposed SFR in 
the case of absence of such inhibitory compound (dot-
ted lines in Figs. 4, 5). It is also interesting to notice that 
in the validation experiments (Fig. 6) the maximum cell 
density is achieved at the lowest SFR (0.1) and decreases 
at progressively higher feeding rates (0.16 and 0.2). The 
explanation for this behaviour could be related to an 
anticipated metabolic shift towards fermentation in the 
latter cases with consequent lower efficiency.

Historically, the concept of self-poisoning affecting the 
end-point of growth dates back to some experimental 
observations on bacterial cultures made by Rahn [77]. 
Then, the idea of self-poisoning/autotoxicity regulating 
cell proliferation has been disregarded, since nutrient 
depletion was recognized as the prevailing phenomenon 
in common laboratory batch cultures, overcoming the 
possible concomitant effect of accumulation of inhibi-
tors [3]. Therefore, growth of microbial cell cultures has 
been almost exclusively related to nutrient depletion by 
the classic Monod equation [2] and models derived [78].

Our results show that the new proposed model is capa-
ble of simulating the typical diauxic growth of different 
strains of S. cerevisiae in a batch culture. The simulations 
of the classical von Meyenburg’s experiment (Fig. 2) and 
the batch phases of the experiments with CEN.PK strains 
(Figs. 4, 5) confirm that, in a closed vessel, the stationary 
phase of a yeast population has to be ascribed only to the 
depletion of the limiting substrate (first glucose and then 
ethanol). Indeed, in a batch culture the accumulation of 
inhibitors (including ethanol) apparently do not achieve 
critical concentration values (Fig.  7, lower panel). On 
the contrary, nutrient exhaustion cannot explain the 
growth decline observed in prolonged fed-batch cul-
tures. In these cases, the model clearly demonstrates 
that the decline cannot be related to the concentration of 
ethanol, but rather to a negative feedback exerted by the 
accumulation of other inhibitory compounds in the cul-
ture medium. The last experiment performed with vari-
able feeding profile clearly shows the occurrence of the 
growth decline without the production of ethanol, being 
related only to the accumulation of the inhibitor (Fig. 7, 
lower panel). It has to be noted that the accumulation of 

Fig. 7 Measured vs. simulated CEN.PK auxotroph growth in 
fed-batch with variable feeding regime. Time series of measured 
microbial mass (times symbol), glucose (filled circle) and ethanol (open 
circle) data vs. model simulations (continuous lines). Dashed vertical 
lines represent the beginning of the feeding phase. The dotted lines in 
the middle and lower panels show the glucose feeding profile and the 
inhibitor simulated values respectively. Calibrated parameters for µ* 
were m1 = 0.1863, m2 = 0.1628 and m3 = 14.1092.
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the inhibitor perfectly resembles the population biomass 
growth since its secretion is calculated as a fixed propor-
tion of the yeast growth (see equations in Table  1). As 
shown in Figs. 4 and 5, during the initial phase of expo-
nential growth, cell mass increases following the glucose 
feeding curve. Meanwhile, the inhibitory compounds 
accumulate in the culture medium until they start to 
slow down the respiration flux, which is the active meta-
bolic pathway in this phase of the aerobic fed-batch cul-
ture. As respiration decreases, while glucose uptake and 
glycolysis are still substantial, internal P concentration 
increases and activates fermentation with consequent 
ethanol production. However, also the fermenting cells 
are affected by the inhibitory compounds, with a contin-
uous decline in growth rate and consequent progressive 
accumulation of glucose in the medium. The growth-
inhibited cells, exposed to the exponentially increasing 
glucose fed to the bioreactor, face a further increase of 
the internal P concentration, which finally induced cell 
death. Indeed, at the end of the two fed-batch cultures 
of CEN.PK strains 30% and 50% of the prototrophic 
and auxotrophic populations respectively resulted non-
proliferating, in agreement with simulation results (data 
not shown). On the other hand, it is worth noting that 
in the experiment characterized by a variable feeding, 
the cells were never exposed to high glucose concentra-
tions (Fig. 7), and consequently their internal P concen-
tration never reached levels sufficient to induce ethanol 
production and then cell death. This is consistent with 
the common empirical approach followed in some fed-
batch cultures, where the occurring limitations are faced 
by keeping a constant feeding after the initial exponen-
tial phase [12, 24]. Interestingly, the lower cell density 
achieved by the auxotroph strain compared to the proto-
troph was simulated by the model also by the increase of 
the negative feedback effect due to a presumable higher 
secretion of the self-inhibitors in the culture medium. 
We can speculate that this could be related with the 
observation of the enhanced permeability of auxotrophic 
strains [28, 79].

The presence of inhibitory toxic compounds in micro-
bial cell cultures has been widely reported, for instance 
unrestricted aerobic fed-batch cultivations of bacteria 
such as Escherichia coli and Bacillus subtilis accumulate 
acetate and propionate, respectively [20]. In the case of 
S. cerevisiae, acetate is also produced during glucose fer-
mentation [75] and it has been reported to be toxic [80, 
81]. However, acetate appeared together with ethanol in 
the experiments presented and it was found only in small 
amounts after the onset of growth rate decline [28].

Ethanol, the main end-product of glucose fermenta-
tion, exerts its toxic effect at multiple levels on yeast cells, 

acting as a non-competitive inhibitor of growth at con-
centrations higher than 5% v/v. [49, 64]. Both model and 
experimental results presented in this work excluded that 
ethanol accumulation could be responsible for the ini-
tial growth decline observed during prolonged fed-batch 
cultures, whereas the inhibition due to high ethanol con-
centration contributed to limit the cell density finally 
achieved along with the other modelled inhibitory com-
pounds. In addition, it is worth noting that the exhausted 
medium collected at the end of the fed-batch cultures, 
once ethanol was removed by evaporation under vac-
uum, was still inhibitory for S. cerevisiae growth (data not 
shown).

Conclusions
The model presented was able to reproduce the dynamic 
behaviour of several yeast strains growing both in batch 
and fed-batch cultures. It is interesting that a very sim-
plified System Dynamics model has been sufficient to 
capture the major dynamics of yeast metabolism and pro-
liferation under different feeding conditions. From the 
applied point of view, the good prediction performance 
of the model suggests its possible use for the optimiza-
tion of feeding strategies aimed to maximize biomass 
yield and glucose saving. From a theoretical point of 
view, these results support the importance of negative 
feedback processes in the understanding of microbial 
growth processes. Further investigation will be necessary 
to determine the chemical nature of the inhibitory com-
pounds, other than ethanol and acetate, involved in such 
negative feedback, and the related mechanisms of action. 
The identification of the inhibitory compounds will be 
performed through GC- or LC–MS and NMR method-
ologies and the study of the mechanisms of action will 
start with the analysis of available “omics” data, espe-
cially those concerning gene expression of S. cerevisiae 
during diauxic shift and stationary phases [82]. Moreo-
ver, it will be interesting to verify the model behaviour in 
other experimental conditions with different carbon and 
energy sources, investigating the dynamics of reserves 
accumulation, induction of quiescence and cell death.

Methods
Numerical simulations
The model has been first developed in the SIMILE (Sim-
ulistics Ltd) visual modelling environment in order to 
facilitate the discussion within the multidisciplinary team 
during the implementation phases. Then, the mathemati-
cal equations were integrated using MATLAB R2012b 
(the MathWorks) with a variable order solver (ode15s) 
based on the numerical differentiation formulas (NDFs) 
particularly efficient with stiff problems [83].
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The model calibration was performed by minimizing 
the sum of the squared errors (SSE)

where n1, n2, n3 are the number of samples per observed 
outputs, CMi, Gi, Ei, are the values of the ith measured 
outputs and C∗

Mi, G
∗
i , E∗

i , are the values of the ith outputs 
predicted by the model. The minimization was performed 
by using the fminsearch MATLAB routine which imple-
ments a Nelder–Mead simplex algorithm [84]. Units and 
initial values of the state variables and the parameters 
used to setup the simulated experiments are reported in 
Table 3. Units and values of the calibrated parameters for 
each simulated yeast strain are reported in Table 4.

Data regarding four S. cerevisiae strains, obtained from 
literature and the new experimental work have been used 
to test the model. In detail, model simulations were com-
pared to classic experiments of growth in batch [53] and 
fed-batch culture [12] and to the results from fed-batch 
cultures of two yeast strains, a prototroph and an auxo-
troph. These belong to the CEN.PK family of S. cerevisiae, 
which is largely used in industry and academic research 
[69, 85]. The reported experiments were performed in an 
aerated bioreactor fed at different specific feeding rates 
(SFR), namely 0.1, 0.16 and 0.2 h−1.

The calibration procedure was performed on four of the 
available datasets (von Meyenburg’s batch [53], Pham’s 
fed-batch [12], fed-batch cultures at SFR =  0.16  h−1 of 
the two CEN.PK strains). The resulting parameter values 
are reported in Table 4. Validation tests were performed 
comparing model simulations with the experimental data 
of the auxotroph CEN.PK strain grown at both lower 
(0.1 h−1) and higher (0.2 h−1) SFRs. In order to test the 
model predictive capability a further validation experi-
ment was performed. Logistically decreasing specific 
growth rate (µ*) was assumed as follows:

where m1, m2 and m3 are calibration parameters. An 
optimization procedure was performed in MATLAB to 
find the values of m1, m2 and m3 to maximise the biomass 
yield and minimise the ethanol production. Specifically, 
we used the MATLAB fminsearch routine to minimize 
the following objective function (OF):

where t is the number of simulation time steps and 
max(CM(t)) is the maximum value of CM achieved during 

SSE =
∑n1

i=1

(

CMi − C
∗
Mi

)2
+

∑n2

i=1

(

Gi − G
∗
i

)2

+
∑n3

i=1

(

Ei − E
∗
i

)2
,

µ∗
= m1 −

m1

1+ exp(−m2 · (t − tF −m3))

OF =
1

max(CM(t))
+

t
∑

i=0

Ei

the simulation. The resulting values of µ* where used as 
SFR to calculate the reactor feeding as reported in the 
next section. The other parameters were kept constant 
for all validation tests and are reported in Tables 3 and 4, 
last column.

The following expression:

was used to represent the microbial mass concentration 
as derived from optical density readings including both 
viable biomass (P +  CM +  R) and dead cells (D) in the 
culture medium volume (V).

Fed‑batch cultures of the CEN.PK strains
The strains used for the experimental work were: the 
prototroph S. cerevisiae CEN.PK 113-7D (MATa URA3 
HIS3, LEU2 TRP1 MAL2-8c SUC2) and the auxotroph 
S. cerevisiae CEN.PK2-1C (MATa ura3-52 his3-D1 leu2-
3,112 trp1-289 MAL2-8c SUC2). They were purchased 
at EUROSCARF collection (www.uni-frankfurt.de/fb15/
mikro/euroscarf ).

Fed-batch cultures of the CEN.PK strains were per-
formed in a 2.0 l working volume of a stirred fermenter, 
Bioflo110 (New Brunswick Scientific). The vessel initially 
contained 1  l of a medium prepared according to Ver-
duyn et al. [86], with 2% w/v glucose, vitamins and trace 
elements, and supplemented with 10  g  l−1 of casamino 
acids (BD Bacto TM Casamino Acids, BectonDickinson 
& Co., Sparks, MD 21152 USA). In the case of the auxo-
troph strain the medium was supplemented with uracil, 
histidine, leucin, triptophan according to [87] so to fully 
cover yeast request for the entire fermentation run.

The reactor was inoculated with an adequate aliquot of 
a pre-culture still growing in the exponential phase and 
prepared in the same medium above described, to give 
an initial O.D.590 of 0.04. After an initial batch phase, 
where glucose was depleted, the reactor was fed with a 
solution containing 50% w/v glucose and salts, trace ele-
ments, glutamic acid and vitamins according to [29]. The 
runs have been carried out at three different specific feed 
rates (SFR), namely 0.10, 0.16, 0.20 h−1, by supplying the 
reactor with an exponentially increasing feeding, accord-
ing to:

where F(t) is the time-dependent feed rate (m3 h−1), F0 is 
the initial feed rate and SFR is the specific feed rate (h−1) 
which, in ideal conditions [76], is equal to the population 
specific growth rate (µ).

The three different SFR values were all below the µ crit-
ical value in correspondence of which ethanol begins to 
be produced [69].

[M] =
P + CM + R+ D

V

F(t) = F0 · exp(SFR · t)

http://www.uni-frankfurt.de/fb15/mikro/euroscarf
http://www.uni-frankfurt.de/fb15/mikro/euroscarf
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To test the predictive capability of the model another 
fed-batch culture of the S. cerevisiae CEN.PK2-1C strain 
was performed. The run was carried in the same cultural 
conditions as described above, but logistically decreasing 
the specific growth rate (µ*), as reported in the paragraph 
“Model description”. The resulting values of µ* where 
used as SFR to calculate the reactor feeding F(t).

In all the fed-batch cultures, oxygen was supplied to 
the reactor by air sparging. The dissolved oxygen ten-
sion (DOT) was kept at 30% air saturation by the cascade 
system, by controlling the impeller speed, or, when this 
reached its maximum value (1,000  rpm) by enrichment 
with pure oxygen. The culture pH was maintained at 5.00 
by automatic addition of 2N KOH during batch phase, 
and 10% v/v NH4OH during fed-batch phase. The foam 
level in the fermenter was controlled by the automatic 
addition of antifoam B (Sigma Aldrich) solution at 10% 
v/v.

Cell mass was determined by optical density at 590 nm 
(O.D.590) and dry weight determination. The calibration 
curve relating O.D.590 values to biomass density provided 
a correlation factor of 2.30 O.D.590 per g l−1. Cell viability 
during fed-batch runs was determined by viable count (in 
triplicate) on YPD (yeast extract 1%, bactopeptone 2%, 
dextrose 2% w/v) agar plates incubated at 30°C for 48 h.

Samples were hourly withdrawn from cultures, filtered 
on 0.45 μm GF/A filters (Millipore, Bedford, MA, USA) 
and the filtrates analysed to determine residual glucose 
and ethanol concentrations in the culture medium (g l−1). 
Glucose and ethanol were determined by enzymatic 
d-glucose assay (GOPOD Format) and Ethanol-enzymatic 
kit from Megazyme (Megazyme International, Ireland 
Ltd.), respectively. All the samples were analysed in trip-
licate showing a standard deviation always lower than 5%.
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