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The prion-like RNA-processing protein 
HNRPDL forms inherently toxic amyloid-like 
inclusion bodies in bacteria
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Abstract 

Background: The formation of protein inclusions is connected to the onset of many human diseases. Human RNA 
binding proteins containing intrinsically disordered regions with an amino acid composition resembling those of 
yeast prion domains, like TDP‑43 or FUS, are being found to aggregate in different neurodegenerative disorders. The 
structure of the intracellular inclusions formed by these proteins is still unclear and whether these deposits have an 
amyloid nature or not is a matter of debate. Recently, the aggregation of TDP‑43 has been modelled in bacteria, show‑
ing that TDP‑43 inclusion bodies (IBs) are amorphous but intrinsically neurotoxic. This observation raises the question 
of whether it is indeed the lack of an ordered structure in these human prion‑like protein aggregates the underlying 
cause of their toxicity in different pathological states.

Results: Here we characterize the IBs formed by the human prion‑like RNA‑processing protein HNRPDL. HNRPDL is 
linked to the development of limb‑girdle muscular dystrophy 1G and shares domain architecture with TDP‑43. We 
show that HNRPDL IBs display characteristic amyloid hallmarks, since these aggregates bind to amyloid dyes in vitro 
and inside the cell, they are enriched in intermolecular β‑sheet conformation and contain inner amyloid‑like fibrillar 
structure. In addition, despite their ordered structure, HNRPDL IBs are highly neurotoxic.

Conclusions: Our results suggest that at least some of the disorders caused by the aggregation of human prion‑like 
proteins would rely on the formation of classical amyloid assemblies rather than being caused by amorphous aggre‑
gates. They also illustrate the power of microbial cell factories to model amyloid aggregation.
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Background
Protein misfolding and aggregation into amyloid con-
formations is linked to the onset of a growing number of 
human disorders, from neurodegenerative diseases such 
as Alzheimer’s, through transmissible prionic encepha-
lopathies, to non-neurodegenerative amyloidoses such as 
type II diabetes [1–3]. The proteins involved in the onset 
of these disorders are not related in terms of sequence 
and/or structure and, in fact, the population of amyloid 

compatible conformations seems to be a generic prop-
erty of many polypeptides [4]. Accordingly, the abil-
ity to sequester potentially harmful misfolded proteins 
into insoluble intracellular deposits appears to be a 
mechanism conserved throughout the evolution, from 
prokaryotic to higher organisms [5–9]. In bacteria, mis-
folded polypeptides are accumulated into inclusion bod-
ies (IBs), insoluble aggregates usually located at the cell 
poles [10, 11]. The formation of IBs in bacteria has long 
been regarded as an unspecific process depending on the 
establishment of hydrophobic contacts between partially 
or totally unfolded species after protein synthesis at the 
ribosome [12]. However, an increasing body of evidence 
indicates that bacterial IBs share a number of common 
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structural features with the highly ordered and, in many 
cases, pathogenic amyloid fibrils, specially when amyloi-
dogenic proteins are recombinantly expressed [13, 14], as 
for the cases of Aβ peptide [15, 16] and Tau [17] proteins 
linked to Alzheimer’s disease or the polyglutamine-con-
taining Ataxin-3 protein associated with the Machado-
Joseph disease [18]. Therefore, IBs have become an 
attractive model to study intracellular protein aggrega-
tion and their consequences in simple but biologically 
relevant conditions that cannot be easily recapitulated 
in  vitro, such as continuous synthesis of the amyloi-
dogenic protein of interest, the presence of the quality 
control machinery or a naturally highly crowded environ-
ment [19–21].

Prion proteins are a particularly intriguing type of 
amyloids, since their aggregated states have a self-per-
petuating ability. Het-s, from the fungus Podospora anse-
rina, was the first prion protein whose bacterial IBs were 
shown to display amyloid-like properties [22, 23]. When 
bacterial Het-s IBs were transfected into prion-free fun-
gal strains, they promoted prionic conversion at levels 
comparable to those induced by homologous in  vitro 
formed amyloid fibrils [22]. In yeast, several polypeptides 
can form prions that behave as dominant non-Mendelian 
cytoplasmic genetic elements [24–26]. The best-charac-
terized yeast prionogenic proteins are Sup35 and Ure2p, 
which, in their aggregated state, form two cytosolic 
inheritable elements named PSI+ and URE3, respec-
tively. We have exploited microbial cell factories to show 
that these two proteins form amyloid-like IBs when they 
are recombinantly expressed [27]. As in the case of Het-
s, purified bacterial Sup35 IBs induce the acquisition of 
the prion phenotype when transfected in prion-free yeast 
strains [27–29]. These observations confirm that the IBs 
molecular structure highly resembles to the fine archi-
tecture of fibrils, in such a way that even the propagating 
properties of amyloids, which depend on a very specific 
conformational signature, appear to be shared by the two 
types of aggregates.

A common feature of most described yeast prions is 
the presence of a distinctive prion domain (PrD) [26]. 
Typically, these domains display sequences of low com-
plexity, highly enriched in asparagine (N) and/or glu-
tamine (Q) residues and are predicted to be intrinsically 
unstructured [30]. Yeast PrDs can switch between this 
unfolded conformation and a transmissible cross-β 
conformation, being both necessary and sufficient for 
amyloid formation and propagation [31]. Interestingly, 
protein domains enriched in Q/N residues are over-rep-
resented in eukaryotic genomes, including the human 
genome, relative to prokaryotic ones, suggesting that 
prion-like conformational conversion might have evolved 
as a mechanism for regulating functionality in eukaryotic 

proteins [32]. Around 250  human proteins have been 
identified with regions similar to the yeast PrDs regard-
ing to amino acid composition [33–36]. Several of these 
proteins containing Prion Like Domains (PrLDs) have 
recently been linked to different neurodegenerative dis-
orders in humans, suggesting that they are potentially 
pathogenic [37, 38]. Most of them are RNA-binding pro-
teins that form inclusions in affected patients. So far, they 
include: (1) fused in sarcoma (FUS), TAR DNA-binding 
protein 43 (TDP-43), EWSR1 and TAF15, involved in 
amyotrophic lateral sclerosis (ALS) and/or some forms 
of frontotemporal lobar degeneration (FTLD) [39–42], 
(2) hnRNPA2B1 and hnRNPA1, linked to familial inclu-
sion body myopathy with Paget’s disease of bone, fronto-
temporal dementia and ALS [43] and (3) TIA1, a protein 
associated with Welander distal myopathy [44].

Despite TDP-43 is perhaps the best characterized of 
these PrLDs-containing proteins it still not clear whether 
the pathological aggregates formed by this protein have 
an amorphous or an amyloid nature. The difficulty of 
purifying soluble TDP-43 makes challenging to deci-
pher this issue by means of classical in vitro aggregation 
studies. Chiti and co-workers have circumvented this 
limitation using bacteria to model intracellular TDP-43 
aggregation. Interestingly, despite TDP-43 IBs were toxic 
to neuroblastoma, they didn’t exhibit amyloid signa-
tures and were structurally amorphous [45]. To address 
whether this lack of ordered structure in protein deposits 
is a common property of pathogenic human PrLD-con-
taining proteins we characterize here the IBs formed by 
heterogeneous nuclear ribonucleoprotein D-like (HNR-
PDL), a heterogeneous ribonucleoprotein (hnRNP) fam-
ily member [46]. HNRPDL is predicted to contain a PrLD 
at its C-terminus and it has been recently shown to be 
linked to limb-girdle muscular dystrophy 1G, a geneti-
cally determined muscle disorder with a primary or 
predominant involvement of the pelvic or shoulder gir-
dle musculature [47]. We show here that whereas, as in 
the case of TDP-43, HNRPDL IBs are inherently toxic to 
neuroblastoma cells, they display clear amyloid features, 
suggesting that at least some of the disorders caused by 
these human prion-like proteins might rely on the forma-
tion of structured amyloid assemblies.

Results
HNRPDL displays a predicted amyloidogenic prion‑like 
domain at the C‑terminus
The heterogeneous nuclear ribonucleoprotein d-like, also 
known as HNRPDL, belongs to the subfamily of ubiq-
uitously expressed heterogeneous nuclear ribonucleo-
proteins (hnRNPs). These proteins are associated with 
pre-mRNAs in the nucleus, functioning in mRNA bio-
genesis and mRNA metabolism [46]. Although all of the 
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hnRNPs are present in the nucleus, some shuttle between 
the nucleus and the cytoplasm [48]. HNRPDL is a 420 
residues long protein for which no structural information 
is available yet. Both SMART (http://smart.embl-heidel-
berg.de) and PFAM (pfam.sanger.ac.uk/) databases coin-
cide to indicate the presence of two contiguous canonical 
RNA recognition motifs (RRM) including residues 149–
221 and 234–306, occupying a central position in the pro-
tein (Figure 1). Both the N- and C- terminal boundaries 
of these small domains are predicted to be low complex-
ity regions without any associated function or structural 
motif. Disorder predictions using FoldIndex [49], FoldUn-
fold [50], and RONN [51] algorithms suggest that both 
the 1–149 and 306–420 sequence stretches are essentially 
disordered (Figure 1). The amino acid compositional bias 
of Q/N enriched prion domains has allowed the recent 
development of three different algorithms to identify 
the presence of PrLDs in protein sequences: PAPA [52], 
PLAAC [53] and PrionScan [54]. No prionic propensity 
is predicted with any of these programs for the N-termi-
nal segment, whereas all of them identify the C-terminal 
region as displaying a PrLD comprising residues 340–420. 
Overall, this domain architecture and PrLD location reca-
pitulates that of TDP-43 (Figure 1; Table 1).

We have recently shown that the identification 
and evaluation of the potency of amyloid nucleating 
sequences in the context of disordered Q/N rich protein 
segments allows discrimination of genuine yeast pri-
ons from non-prionic sequences displaying very similar 
amino acid composition, a concept that was implemented 
in the pWALTZ algorithm [34]. The C-terminal PrLD of 
HNRPDL displays a pWALTZ score (82.27) higher than 
the corresponding PrLD in TDP-43 (68.16) (Table 1) and, 
strikingly, higher than those of Ure2p (73.99) and Sup35 
(73.66) prion domains [34], thus indicating the presence 

of an amyloidogenic sequence stretch comprising resi-
dues 342–362 in this Q/N rich disordered protein region.

Aggregation of HNRPDL into IBs in bacteria
The inherent aggregation propensity of human amyloid 
proteins results in most of them aggregating into insolu-
ble IBs when they are produced in bacteria [55]. To test 
if this is the case of HNRPDL, we analyzed the cellular 
distribution of the recombinant protein after its expres-
sion in E. coli at 37°C for 20 h. As assessed by SDS-PAGE, 
a new protein band of ~50  kDa, corresponding to the 
expected HNRPDL molecular weight (47 kDa), could be 
detected in induced cells (Figure  2a). The bacteria cells 
were harvested, lysed and centrifuged and the resulting 
supernatant and pellet fractions were analyzed by SDS-
PAGE. HNRPDL was found essentially in the insolu-
ble fraction suggesting that it likely aggregated into IBs 
(Figure  2a). The protein remained in the insoluble frac-
tion when protein expression was induced at either 25 or 
18°C (data not shown). We further cloned the HNRPDL 
cDNA downstream of the GST gene in a pETM30 vector 
and expressed the fusion protein at 20°C for 20 h. A new 
protein band of ~75 kDa was observed for induced cells, 
corresponding to the sum of the molecular weights of 
GST (26 kDa) and HNRPDL (47 kDa) (Figure 2b). Frac-
tionation indicated that despite the theoretical solubility 
provided by GST, the fusion was located in the insoluble 
fraction (Figure  2b) a localization that was maintained 
when protein expression experiments were performed 
at lower temperatures (data not shown). Because RRM 
domains are known to be soluble at high concentrations 
[56] and no aggregation-prone region is detected at the 
disordered N-terminal segment using predictive algo-
rithms like AGGRESCAN [57] or TANGO [58], it is likely 
that the predicted amyloidogenicity of the prion-like 
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Figure 1 TDP‑43 and HNRPDL domain architecture. Cartoons of proteins TDP‑43 and HNRPDL show the domain architecture, where RRM accounts 
for RNA recognition motif and are represented in blue, and predicted disordered regions and prion domains (PrD) are shown in striped green and red, 
respectively. The places where RRM domains as assigned according to PFAM overlay with disordered predicted regions were assumed to corre‑
spond to canonical RRM domains.
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C-terminal region would account for the propensity of 
HNRPDL to form intracellular aggregates, either alone or 
when fused to GST.

HNRPDL IBs bind to thioflavin‑S in living cells
We have shown recently that thioflavin-S (Th-S) stain-
ing of living bacterial cells can be used to detect the 
presence of intracellular amyloid-like structures as well 

as to find inhibitors that interfere with amyloid for-
mation [17, 59]. The staining of cells expressing HNR-
PDL was monitored using confocal microscopy. As it 
can be observed in Figure 3a, induced cells exhibited a 
green fluorescent background with strong fluorescent 
foci located at the cell poles, suggesting that HNR-
PDL adopts amyloid-like conformations in bacterial 
IBs. In contrast, non-induced control cells exhibited 
only residual fluorescence. The presence of intracel-
lular amyloid-like protein conformations in induced 
cells could also be monitored using fluorescence spec-
troscopy. As previously described for cells expressing 
Aβ42 [59], the Th-S fluorescence maximum increases 
and red-shifts in the presence of living cells express-
ing HNRPDL, relative to the Th-S fluorescence maxi-
mum recorded in the presence of non-induced cells 
(Figure 3b).

Table 1 Prediction of  PRLDs and their amyloid cores 
potency in  the sequences of  HNRPDL and  TDP-43 RNA-
binding proteins

Uniprot PrD pWaltz 
score [34]

PAPA [52] PLAAC 
[53]

Prion Scan 
[54]

HNRPDL O14979 337–417 339–418 341–420 82.27

TDP‑43 Q13148 346–416 299–378 341–417 68.16
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Figure 2 Expression of recombinant HNRPDL protein in E. coli cells. 
a Analysis on SDS‑PAGE of E. coli cells extracts expressing HNRPDL 
protein. b SDS‑PAGE analysis of cell extracts from cells expressing the 
GST‑HNRPDL fusion. On both gels lane 1 shows total extract; lane 2, 
soluble fraction (supernatant), and lane 3 insoluble fraction (pellet). 
Arrows indicate the bands corresponding to HNRDPL protein.
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Figure 3 Th‑S staining of cells expressing HNRPDL. a Fluorescent  
confocal microscopy images of non‑induced E. coli cells and express‑
ing HNRPDL IBs stained with Th‑S at ×100 magnification.  
b Fluorescence spectra of Th‑S in the presence of non‑induced  
(−IPTG) and induced (+IPTG) living cells expressing HNRPDL.  
Arrows indicate the position of IBs.
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Purified HNRPDL IBs bind to amyloid dyes
We next purified the HNRPDL IBs to characterize biophys-
ically their amyloidogenic properties. Using SDS-PAGE 
densitometry we calculated that HNRPDL constituted 
around 30% of all proteins in the purified IBs fraction (Fig-
ure 4). To evaluate the specific contribution of HNRPDL in 
the different assays, relative to that of other proteins pre-
sent in this fraction, cells bearing the same plasmid with-
out any insert were induced and the IBs fraction purified 
in the same manner than those containing the HNRPDL 
cDNA and used as negative control (Figure 4). In addition, 
the IBs of cells expressing the yeast prion Ure2p and Aβ42 
were purified using the same protocol and used as positive 
controls, since extensive characterization of the bacterial 
IBs formed by these two proteins have revealed that they 
posses an amyloid-like nature [16, 27].

Thioflavin-T (Th-T) fluorescence emission is enhanced 
in the presence of amyloid fibrils [60]. Consistent with 
their amyloid properties, the same behaviour is observed 
upon incubation of Th-T with Aβ42 and Ure2p IBs. In the 
same way, the increase in Th-T fluorescence in the pres-
ence of HNRPDL IBs suggests the existence of amyloid 
conformations in the polypeptides embedded in these 
aggregates (Figure  5a). Although their impact in Th-T 
fluorescence is lower than that of Aβ42 IBs, it is quite 
similar to the one promoted by Ure2p IBs and remark-
ably different from that observed in the IBs fraction of 
negative control cells.

The absorbance of the amyloid dye congo red (CR) red-
shifts in the presence of amyloid fibrils [61]. The same 

effect was observed in the presence of Aβ42, Ure2p and 
HNRPDL IBs, consistent with the presence of amyloid-
like structures in these aggregates. The observed red-shift 
was smaller for HNRPDL than for the other two amyloid 
proteins, but still significantly different from that pro-
moted by the IBs fraction of negative control cells (Fig-
ure  5b). Indeed, quantification of CR bound to IBs (see 
“Methods”) indicates that HNRPDL binds 2.4 times more 
dye than control IBs. The difference spectrum between 
the dye in the absence and presence of purified IBs allows 
the detection of the characteristic band at 540 nm, cor-
responding to the amyloid conformation in the three IBs 
(Figure 5c).

HNRPDL IBs are enriched in intermolecular β‑sheet 
structure
From a structural point of view, the formation of amyloid 
fibrils is always characterized by an enrichement in pro-
tein β-sheet content [61]. Attenuated Total Reflectance–
Fourier Transform Infrared spectroscopy (ATR-FTIR) 
is a powerful tool to investigate the secondary structure 
in protein aggregates [62–65]. We used this technique to 
analyse the conformational properties of the IBs in the 
present study (Figure  6; Table  2; Additional file  1: Fig-
ure S1). Deconvolution of the absorbance spectra in the 
amide I region allows to observe a signal at ~1,622 cm−1 
common to the IBs formed by Aβ42, Ure2p and HNRPDL 
proteins, which is otherwise absent in negative control 
samples. This band is usually attributed to the presence 
of densely packed β-sheet structures, linked by short and 
strong hydrogen bonds, compatible with the intermo-
lecular contacts in an amyloid fold [62]. Aβ42, Ure2p and 
HNRPDL IBs also share a band at ~1,636  cm−1, which 
has been typically assigned to intramolecular β-sheet; 
this band is also present in the negative control, but it 
contributes less to the total spectral area. In contrast, 
the negative control IBs exhibits higher contributions 
at ~1,653  cm−1 and ~1,665  cm−1, which indicates an 
enrichment in helical, irregular and turn conformations, 
relative to Aβ42, Ure2p and HNRPDL IBs. Aβ42 and 
Ure2p IBs display a band at 1,682 cm−1, which is usually 
assigned to a high frequency β-sheet signal [66]. The lack 
of this signal, together with the presence of an exclusive 
band at ~1,676  cm−1, attributed to turns [66], suggests 
that despite sharing an amyloid nature, the fine structural 
properties of HNRPDL IBs differ from those formed by 
Aβ42 and Ure2p.

HNRPDL IBs posses an inner amyloid core
We monitored the morphology of HNRPDL IBs using 
Transmission Electronic Microscopy (TEM). Freshly 
purified IBs displayed a typical electrodense amor-
phous appearance (Figure 7). However, upon incubation 
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Figure 4 Purification of recombinant HNRPDL IBs. SDS‑PAGE analysis 
of IBs purified from the insoluble fraction of induced cells grown at 
37°C containing either an empty plasmid (lane 1) or a plasmid encod‑
ing for HRNPDL (lane 2). The arrow indicates the band corresponding 
to HNRDPL.
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of purified IBs at 37°C for 12  h, the presence of fibril-
lar structures becomes already evident (Figure  7). The 
same behaviour has been reported for the amyloid-like 
IBs of other proteins and interpreted as the IBs contain-
ing densely packed bundles of amyloid fibrils inside cells 
that become relaxed and exposed upon in  vitro incu-
bation [14]. This property can be qualitatively tested 
using proteinase K (PK), a protease usually used to map 
the protected core of amyloid fibrils because in spite of 
being highly active against peptidic bonds it cannot eas-
ily attack the highly packed backbones in amyloid β-sheet 

structures. Accordingly, we have shown that PK diges-
tion allows revealing the existence of a fibrillar core in Aβ 
peptide IBs [15]. We used the same approach to assess if 
the presence of a similar fibrillar material might account 
for the amyloid conformational properties of HNRPDL 
IBs. Upon PK digestion, the presence of typical long 
and unbranched amyloid fibrils becomes evident. The 
fibrils are associated with apparently amorphous mate-
rial and in some micrographs fibrils emerging from the 
preformed compact IBs are seen. The elementary fibrils 
are ~5 nm in diameter and tend to associate laterally into 
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Figure 5 Specific binding of amyloid dyes to HNRPDL IBs. a Fluorescence emission spectra of Th‑T in the absence or the presence of Aβ42, Ure2p, 
HNRPDL and control IBs. b Congo red (CR) absorbance spectra in the absence or the presence of Aβ42, Ure2p, HNRPDL and control IBs. c Difference 
absorbance spectra of CR in the presence and in the absence of IBs, showing the characteristic amyloid maximum at 540 nm.
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bundles, thus supporting that HNRPDL IBs constitute 
a bacterial reservoir of amyloid structures, that coexist 
with less ordered and PK susceptible protein regions, in 
good agreement with the deduced secondary structure 
content from FTIR analysis. According to the presence 
of an amyloid core: (1) HNRPDL IBs are much more 
resistant towards PK digestion than negative control IBs 
(Additional file 2: Figure S2) and (2) HNRPDL IBs retain 
significantly higher Th-T binding in diluted solutions 
than negative control IBs even upon long time incubation 
(Additional file 3: Figure S3). These two properties reca-
pitulate that of the amyloid-like IBs formed by Aβ40 and 
Aβ42 peptides in bacteria [16].

HNRPDL IBs are toxic to cultured neuronal cells
It has been shown for different and unrelated proteins 
that the binding to ANS-like dyes correlates with the 
toxicity of amyloid species, suggesting that the expo-
sure of hydrophobic patches is a critical characteristic of 
these pathogenic assemblies [67]. We analyzed the bind-
ing of bis-ANS to Aβ42, Ure2p and HNRPDL IBs. In the 
presence of these aggregates, bis-ANS experienced the 
expected blue-shift and a strong increase in fluorescence 
maximum. The strongest spectral changes were promoted 
by the Aβ42, and the prion Ure2p IBs. However, HNRPDL 
IBs induced a significantly higher increase in bis-ANS flu-
orescence than negative control IBs (Figure 8).
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Figure 6 Secondary structure content of HNRPDL IBs. FTIR absorbance in the amide I region of the infrared spectrum (black) for Aβ42, Ure2p, HNR‑
PDL and control IBs. Spectral components in the Fourier deconvoluted FTIR spectra are shown. The area and position of the correspondent bands 
are indicated in Table 2.

Table 2 Contribution of  secondary structure components to  the absorbance FTIR spectra of  Aβ42, Ure2p, HNRPDL 
and control IBs

Aβ42 Ure2p HRNPDL Control

Band (cm−1) Area (%) Band (cm−1) Area (%) Band (cm−1) Area (%) Band (cm−1) Area (%)

1,622 26.20 1,621 24.72 1,622 19.40 – – Intermolecular β‑sheet

1,636 25.88 1,637 26.70 1,636 28.67 1,630 19.32 Intramolecular β‑sheet

1,652 24.48 1,653 25.89 1,654 32.00 1,653 40.44 α‑helix/random

1,668 13.48 1,668 13.31 – – 1,667 40.22 Turns

– – – – 1,676 14.92 – – β‑turns

1,682 9.94 1,682 9.38 – – – – Antiparalel β‑sheet
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The aggregates formed by different human prion-like 
proteins have been shown to exert neurotoxicity [68]; 
therefore we tested if, in agreement with their bis-ANS 
binding ability, purified HNRPDL IBs could be toxic for 
cultured neuroblastoma SH-SY5Y cells. The combination 
of Hoechst and propidium iodide (PI) staining allows to 
asses cell viability by fluorescence microscopy, as viable 
cells are permeable to Hoechst and PI only enters cells 
with disintegrated membranes thus corresponding to 
dead cells. Cell morphology can be monitored as well to 
discriminate toxic and non-toxic aggregates in this assay. 
In samples treated with negative control IBs cell were 
attached to the culture plate at a confluent stage with 
only a reduced number of cells becoming stained with 
PI, indicating that they display low or no toxicity (Fig-
ure  9). In contrast, the IBs formed by Aβ42 and Ure2p 
proteins were inherently toxic to neuronal cells as both 
induce positive PI staining in most cell nuclei (Figure 9). 

HNRPDL IBs HNRPDL IBs 37ºC o/n 

HNRPDL + 20 µg/mL Proteinase K, 37ºC 

Figure 7 HNRPDL IBs contain amyloid‑like fibrils. Negatively stained HNRPDL IBs visualized by TEM. The upper panel shows freshly purified HNRPDL 
IBs (left) and IBs incubated overnight at 37°C (right). The bottom panel displays representative micrographs of PK digested HNRPDL IBs.
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In the same manner, HNRPDL IBs turned to be highly 
neurotoxic, with a large majority of cells being stained 
by PI (Figure 9). Moreover, this effect was dose depend-
ent, since cells incubated with 40 µg/mL of HNRPDL IBs 
kept attached, homogeneously distributed and displayed 
normal morphology, whereas cells treated with 80 µg/mL 

HNRPDL IBs lost completely their morphology becom-
ing detached and agglutinated (Figure 9).

Discussion
The number of human proteins involved in neurodegen-
erative disorders is rapidly expanding, suggesting that 

Control 

Abeta42 

Ure2p 

HNRPDL 

40µg/mL 

HNRPDL 
80µg/mL 

Overlay IP Hoechst

Figure 9 Toxicity of HNRPDL IBs as visualized by confocal microscopy. Representative confocal fluorescence microscopy images of SH‑SY5Y cells 
stained with propidium iodide (IP) or Hoechst after incubation with Aβ42, Ure2p, HNRPDL and control IBs for 24 h at 37°C. The bar corresponds to 
15 µM.
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there are likely numerous disease-associated proteins yet 
to be identified. Many of these disorders involve the for-
mation of self-templating aggregates [69]. However, since 
most protein aggregates are not infectious, prion-based 
disorders have been always considered different from 
the rest of aggregation caused diseases. Nevertheless, 
increasing evidence indicates that the proteins involved 
in many neurodegenerative disorders, including Alzhei-
mer’s and Parkinson’s, display a prion-like behaviour, 
exhibiting a cell-to-cell propagation [70]. In addition, dif-
ferent human proteins containing intrinsically disordered 
domains with an amino acid composition resembling 
those of the prion forming domains (PFDs) in yeast pri-
ons are being found connected to degenerative disorders 
[71]. Many of these disorder-linked PrLD-containing 
proteins are RNA-binding proteins typically containing 
one or more RRM domains [37]. TDP-43 was the first 
identified protein of this class. It was initially found to be 
a major constituent of the protein aggregates in the spi-
nal cord motor neurons, in the hippocampus and neo-
cortex of ALS or FTLD patients, but it is also present in 
an aggregated form in other neurodegenerative disorders 
[39]. A majority of the mutations linked to ALS or FTLD 
map into the PrLD, implicating thus this domain in the 
disease [71]. HNRPDL is a less studied RNA-binding 
protein, which shares domain organization with TDP-43 
(Figure 1), despite its precise three-dimensional structure 
is unknown. Interestingly, it has been shown that two 
mutations occurring in the PrLD of this protein, D378N 
and D378H, lead to limb-girdle muscular dystrophy 1G 
[47]. According to PrionScan, PLAAC and PAPA prion 
predictors [52–54] these two mutations increase the 
prion propensity of the domain (Table 3).

The structure of TDP-43 inclusions in ALS and FTLD 
patients is still unclear and whether these deposits have 
an amyloid nature or not is matter of debate. Due to the 
difficulty of purifying TDP-43 for the in vitro characteri-
zation of its aggregation process and because the intracel-
lular aggregation of human amyloid proteins in bacteria 
has been shown to result into amyloid-like IBs, Chiti and 
co-workers characterized the nature of the IBs formed 
by TDP-43 in E. coli to approximate the conformational 

properties of its inclusions in ALS and FTLD [45]. They 
found out that TDP-43 aggregates present in E. coli IBs 
did not possess any of the hallmarks of amyloid fibrils, 
allowing them to be classified as amorphous. However, 
they were shown to be toxic for cultured neuronal cells. 
This raises the question of whether this conformation is 
a generic property of the aggregates formed by human 
PrLD-containing proteins and whether it is indeed the 
lack of an ordered structure in the aggregates the under-
lying cause of their toxicity in pathological states. The 
analysis of the conformational aggregates formed by 
HNRPDL in bacteria indicate that this is not the case, 
since these aggregates bind to amyloid dyes, are enriched 
in intermolecular β-sheet conformation and contain 
inner fibril-like structure; still they are neurotoxic. The 
amorphous nature of the aggregates formed by TDP-43 
contrasts with those formed by the yeast PFDs to which 
its PrLD resembles, since these latter display clear amy-
loid properties, both in  vitro [72] and when expressed 
recombinantly in bacteria [27]. We have shown that the 
presence of a short amyloidogenic stretch in PrLDs, as 
predicted with our algorithm pWALTZ, determines to 
a large extent its amyloid potential [34]. Q/N enriched 
yeast putative prion domains with pWALTZ scores 
higher than 73.55 all formed amyloid assemblies, whereas 
those falling below this threshold display lower amyloid 
propensity. Interestingly, the PrLDs of HNRPLD and 
TDP-43 display pWALTZ values above and below this 
threshold, respectively, which might account, at least in 
part, for their different intracellular amyloid propensity.

Aggregation constraints the evolution of proteins and 
accordingly nature have evolved different strategies to 
minimize protein aggregation in sequences and struc-
tures [73]. In this context, the inherent aggregation of 
human proteins containing PrLDs and their link to dis-
ease, strongly suggest that these domain are conserved 
because they serve functional purposes. Increasing evi-
dence indicates that in RNA-binding proteins, these dis-
ordered domains work in the reversible recruitment of 
the protein into RNA-P bodies or stress granules under 
cellular stress [38, 74]. The amyloidogenic properties of 
HNRPLD constitute yet another example illustrating 
how the determinants for the establishment of functional 
interactions and those accounting for the formation of 
toxic amyloid assemblies overlap significantly [75, 76], 
suggesting that in PrLDs-containing proteins the forma-
tion of functional macromolecular complexes and the 
aggregation of their individual subunits might compete 
in the cell. This will explain, why point mutations in these 
domains or environmental changes, such as prolonged 
stress, enhance recruitment into stress granules [43, 77], 
disrupting the reversibility of the assembly and finally 
leading to the accumulation of aggregates, triggering 

Table 3 Predicted prion propensity of  wild type HNRPDL 
and  mutants involved in  limb-girdle muscular dystrophy 
1G

PrionScan [54] PAPA [52] PLAAC [53]

HNRPDL 42.904 0.12 30.301

D378H 44.280 0.14 31.395

D378 N 46.922 0.15 33.013
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the onset of the disease. The present work illustrates the 
potency of microbial cell factories to model amyloid con-
formational conversion.

Methods
Protein expression and purification
Human HNRPDL cDNA was cloned into a pET28a(+) 
vector (Novagen, INC., Madison, WI, USA). The plasmids 
encoding for Aβ42 and Ure2p proteins were as previously 
described [16, 27, 78]. The plasmids were transformed 
into E. coli BL21(DE3) cells. Cells were grown aerobi-
cally in liquid Luria–Bertani (LB) medium containing 
appropriate antibiotics in a rotary shaker at 37°C and 
250 rpm. Overnight cultures were diluted 100-fold in LB 
and allowed to grow to an OD600 of 0.6. At the indicated 
OD600, protein expression was induced with 1 mM isopro-
pyl β-d-1-thiogalactopyranoside (IPTG) and in the case of 
Aβ42 and Ure2p the culture was continued at 37°C for 4 h 
as previously described [16, 78]. HNRPDL cells were cul-
tured at 37°C 25°C or 18°C for 20  h upon induction. To 
express HNRPDL-GST, the human HNRPDL sequence 
was cloned into a pETM-30 vector in order to produce a 
N-terminal fusion protein with a His tag followed by GST 
with a TEV protease cleavage site; the resulting construct 
was transformed into E. coli BL21(DE3) cells and grown 
as described above, inducing protein expression for 20 h 
at 20°C or 16°C. As a negative control, E. coli BL21(DE3) 
cells were transformed with an empty pET28a(+) vector, 
grown and induced in the same conditions than cells con-
taining the HNRPDL encoding plasmid.

Inclusion bodies purification
Intracellular IBs were purified as previously described 
[15]. Briefly, cell pellets from 5 mL induced cultures were 
resuspended in 140 μL of lysis buffer (10  mM Tris–HCl, 
pH 8.0, 1  mM EDTA, 150  mM NaCl), containing 0.8 μL 
protease inhibitor PMSF (17.4 mg/mL) and 3 μL lysozyme 
(10 mg/mL). The suspension was incubated for 30 min at 
37°C under gentle agitation. Then cells were incubated with 
1% (v/v) NP-40 for 50 min under mild agitation at 4°C. To 
remove nucleic acids, 3 μL of DNase I from a 1  mg/mL 
stock, 3 μL of 1 mg/mL of RNase and 3 μL of 1 M MgSO4 
were added and the resulting mixtures were further incu-
bated at 37°C for 30 min. IBs were collected by centrifuga-
tion at 12,000×g for 15 min at 4°C. Finally, IBs were washed 
with lysis buffer containing 0.5% Triton X-100 three times, 
twice with lysis buffer and finally stored at -80°C until anal-
ysis. The purified IBs fraction was resolved on a 15% SDS–
PAGE gel stained with Coomassie brilliant blue.

Thioflavin‑S binding in living cells
Detection of cell-permeable thioflavin-S (Th-S) binding 
was performed in non-induced and induced living cells 

expressing HNRPDL protein. Bacterial cells were washed 
with PBS and diluted to an OD600nm of 0.1. Cells were 
incubated for 1 h in the presence of 125 µM Th-S diluted 
in PBS and washed twice with PBS. Fluorescence emis-
sion spectra were recorded in a range of 400–500  nm 
using an excitation wavelength of 375  nm. Apertures of 
5 nm were fixed in both excitation and emission slits. The 
analysis of fluorescence microscope images allowed the 
detection of accumulated amyloid deposits inside bacte-
rial cells. Cells were placed on top of a microscope slide 
and covered with a cover slip. Photographs were acquired 
using a 488-nm argon laser and emission collected in a 
515–540 nm range.

Thioflavin‑T binding
Thioflavin-T (Th-T) binding was analyzed for IBs purified 
from cells expressing Aβ42, Ure2p or HNRPDL and from 
control cells, resuspended in PBS at pH 7.0 and OD350nm 
of 0.1 in the presence of 25 μM Th-T. Fluorescence emis-
sion spectra were recorded from 460 to 600  nm with 
an excitation wavelength of 440  nm, using a slit width 
of 5  nm for excitation and emission in a Jasco FP-8200 
spectrophotometer (Jasco corporation, Japan). Each trace 
represents the average of 3 accumulated spectra.

Th-T fluorescence kinetics for HNRPDL and nega-
tive control IBs were analyzed from diluted IBs at a final 
OD350nm of 0.05 in PBS at pH 7. Samples were incubated 
for 400  min under agitation (800  rpm) at 25°C, in the 
presence of 25 μM Th-T. The kinetic traces were meas-
ured exciting at 440  nm and emission was recorded at 
475 nm, slit width of 5 nm were used for excitation and 
emission in a Jasco FP8200 spectrophotometer (Jasco 
corporation, Japan).

Congo red binding
Congo red (CR) interaction with IBs purified from cells 
expressing Aβ42, Ure2p or HNRPDL and from control 
cells was tested using a Cary-400 UV/Vis spectropho-
tometer. IBs samples were diluted to a final OD350nm of 
0.1 in PBS at pH 7.0 and 20 μM of CR was added. After 
5  min of equilibration, the absorbance spectra were 
recorded from 400 to 700 nm. The differential CR spectra 
in the presence and absence of protein were calculated to 
detect the typical amyloid band at ~540 nm. CR binding 
was quantified by the equation: CR Bound =  Abs540nm/ 
25,295 − Abs477nm/46,306.

Bis‑ANS binding
Binding of 4,4’-bis[1-anilinonaphthalene 8-sulfonate] 
(bis-ANS) to purified Aβ42, Ure2p, HNRPDL IBs and the 
negative control extract was evaluated by registering bis-
ANS fluorescence between 400 and 600  nm after exci-
tation at 370 nm in a Jasco FP-8200 spectrophotometer 
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(Jasco corporation, Japan), with excitation and emission 
slit widths of 5 nm. 25 μM of bis-ANS was added to IBs 
at a final OD350 of 0.1 in PBS. Spectra were registered 
at 25°C as the accumulation of three consecutive scans, 
after equilibration of the sample for 5 min.

ATR‑FTIR spectroscopy
ATR FTIR spectroscopy analyses of purified Aβ42, Ure2p, 
HNRPDL and control IBs were performed with a Bruker 
Tensor 27 FTIR Spectrometer (Bruker Optics Inc.) with 
a Golden Gate MKII ATR accessory. Spectrum acquisi-
tions consisted of 16 independent scans, measured at a 
resolution of 2 cm−1 within the 1,800–1,500 cm−1 range. 
Spectra were acquired, background subtracted, baseline 
corrected and normalized using the OPUS MIR Tensor 
27 software. Second derivatives of the spectra were used 
to determine the frequencies at which the different spec-
tral components were located. All FTIR spectra were fit-
ted to overlapping Gaussian curves using PeakFit package 
software (Systat Software) and the maximum and the 
area of each Gaussian were calculated.

Limited proteinase K digestion
HNRPDL and negative control IBs were resuspended 
at a final OD350 of 1 in PBS buffer at pH 7.0. Digestion 
was initiated by adding proteinase K (PK) at a final con-
centration of 20 μg/mL and the reaction was carried out 
for 30 min at 37°C under agitation (500 rpm). PK prote-
olysis was monitored at 350 nm using a Cary-400 UV/Vis 
spectrophotometer.

Transmission electron microscopy (TEM)
Purified HNRPDL IBs (100  µg/mL) were digested with 
20 μg/mL proteinase K (PK) and incubated at 37°C at dif-
ferent digestion times. Proteolytic mixtures were centri-
fuged and pellets were resuspended in water. Then 10 μL 
of purified and PK digested HNRPDL IBs solutions were 
placed on carbon-coated copper grids and allowed to 
stand for 5 min. For negative staining, grids were washed 
with distilled water and stained with 2% (w/v) uranyl 
acetate for 1 min. The samples were imaged using a JEM-
1400 transmission electron microscope operating at an 
accelerating voltage of 120 kV.

Cell viability assay
Human SH-SY5Y cells were cultured in F-12 medium 
supplemented with 10% FBS on glass slides at 70% con-
fluence and maintained at 37°C in a 5% CO2 atmosphere. 
Cell cultures were incubated in the absence (control) and 
the presence of Aβ42, Ure2p and HNRPDL IBs resus-
pended in sterile PBS for 24 h. Cells were counterstained 
with 0.5 μg/mL Hoechst and 10  μg/mL PI (Molecular 
Probes) for 15  min at 37°C and washed twice with PBS 

buffer. Cell morphology and viability were analyzed by 
confocal fluorescence microscopy (Olympus Fluoview 
1000) with an UPlansApo 10x objective using an orange 
diode (588–715  nm emission collected) and a UV laser 
(excited at 350 nm and collected at 405 nm).
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