### Poster Presentation

## **Open Access**

# Expression of trehalose-6-phosphate synthase gene from Arabidopsis thaliana in transgenic tobacco: a strategy to increase temperature stress tolerance

André de Almeida<sup>\*1</sup>, Enrique Villalobos<sup>2</sup>, Susana Araújo<sup>1</sup>, Luís A Cardoso<sup>3</sup>, Dulce Santos<sup>1</sup>, José M Torné<sup>2</sup> and Pedro S Fevereiro<sup>1,4</sup>

Address: <sup>1</sup>Laboratório Biotecnologia Células Vegetais, ITQB-UNL, Oeiras, Portugal, <sup>2</sup>Institut de Biologia Molecular de Barcelona, Barcelona, Spain, <sup>3</sup>Instituto de Investigação Científica Tropical, Lisboa, Portugal and <sup>4</sup>Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Portugal

\* Corresponding author

from The 4th Recombinant Protein Production Meeting: a comparative view on host physiology Barcelona, Spain. 21–23 September 2006

Published: 10 October 2006

Microbial Cell Factories 2006, 5(Suppl 1):P88 doi:10.1186/1475-2859-5-S1-P88

© 2006 de Almeida et al; licensee BioMed Central Ltd.

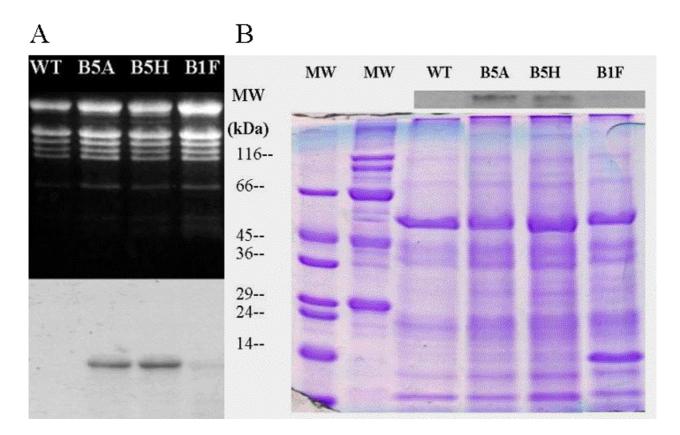
#### Background

Genetic engineering of plants towards osmoprotectant accumulation is gaining increased importance within the broad context of abiotic stress tolerance [1]. An enzyme, trehalose-6-phosphate synthase, is believed to play a key role in the synthesis of the disaccharide trehalose and hence on the improvement of abiotic stress tolerance [2]. We used *Agrobacterium* to transform tobacco plants to express the trehalose-6-phosphate synthase gene from *Arabidopsis thaliana*, under the control of CaMV 35S promoter and using the vector pGreen 0229 [3]. Transgenic T2 plants were evaluated for gene expression by northern and western blots. Seeds were sown in media germinated at: 15, 25 and 35°C for evaluating germination rates under high and low temperatures.

#### Results

Three of the transgenic lines obtained (B5A, B5H and B1F) have distinct levels of gene expression: B5H and B5A are high expressing lines while B1F is a low expressing one. In non-transgenic controls no expression was detected (Figure 1).

Transgenic lines were shown to have significantly higher germination rates under low and high temperatures (respectively, 15 and 35°C) than wild type plants (Table 1).


#### Conclusion

Our results demonstrate that transgenic plants accumulating trehalose-6-phosphate synthase have an altered phenotype that includes temperature stress tolerance upon germination. We suggest that AtTPS1 can be used to engi-

Table 1: Germination rates (Number of seeds germinated per 100 seeds placed on germination medium) of three transgenic lines at three different temperatures.

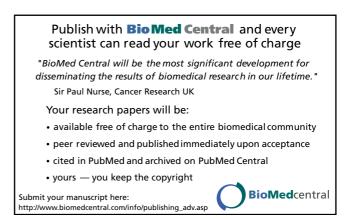
| Temperature | WT         | B5A                      | B5H                      | BIF                      |
|-------------|------------|--------------------------|--------------------------|--------------------------|
| 24°C        | 99.0ª(1.0) | 99.0ª(1.50)              | 99.0ª(2.00)              | I 00.0ª(0.00)            |
| 15°C        | 32.3 (4.1) | 95.0 <sup>b</sup> (3.97) | 97.4 <sup>b</sup> (2.95) | 97.0 <sup>b</sup> (2.80) |
| 35°C        | 18.0 (3.8) | 88.0 <sup>b</sup> (7.9)  | 85.2 <sup>b</sup> (6.35) | 83.2 <sup>b</sup> (5.9)  |

<sup>a, b</sup>Percentages with different superscripts indicate statistical significance (p < 0.05); Standard deviations are shown between parenthesis; WT – Wild Type plants; B5A, B5H and B1F – Transgenic lines



#### Figure I

AtTPS1 gene expression analysis in WT and transgenic tobacco lines. A – Northern blot B – Western blot. In both cases, no AtTPS1 protein production was detected in control wild type plants while transgenic lines showed accumulation of AtTPS1 transcripts and enzyme. **WT** – Wild Type; **B5A**, **B5H** and **B1F** – Transgenic line. MW – Molecular weight markers (kDa).


neer important crop plants such as maize, wheat or rice to withstand different environmental stresses.

#### **Acknowledgements**

To Fundação para a Ciência e a Tecnologia for funding this research.

#### References

- Nuccio ML, Rhodes D, Mcneil SD, Hanson AD: Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 1999, 2:128-134.
- Romero C, Bellés JM, Vayá JL, Serrano R, Culiañez-Maciá FA: Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. *Planta* 1997, 201:293-297.
- Almeida AM, Villalobos E, Araújo SS, Leyman B, van Dijck P, Cardoso LA, Fevereiro PS, Torné JM, Santos DM: Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 2005, 146:165-176.

