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Background
In bacteria, inclusion bodies are commonly observed dur-
ing overexpression of plasmid-encoded recombinant
genes, and represent a great matter of concern in biotech-
nology [1]. Bacterial inclusion bodies are also connected
to the protein quality control [2] and to the prevention of
cytotoxicity associated to aberrantly folded proteins [3,4].
On the other hand, these protein aggregates are dynamic
structures, since they grow as the result of an unbalanced
equilibrium between protein deposition and removal
[5,2]. Therefore, there is not any physiological evidence of
bacterial inclusion bodies being structures well organized
to facilitate embedded protein removal by chaperones or
proteases. We have comparatively analyzed the molecular
organization and dynamism of a recombinant E.coli β-
galactosidase and its derivative VP1LAC [6] when either
deposited as inclusion bodies or as aggregates resulting
from in vivo thermal denaturation in a laboratory wild
type strain E.coli MC4100 and its derivatives DnaK- and
GroEL44 (namely JGT20 and BB4565, respectively). The
expression of both lacZ and VP1LAC genes is triggered by
temperature up shift from 28°C to 42°C.

Results
A small part of the recombinant β-galactosidase present in
the cell (~5%) was found in the insoluble cell fraction as
a result of a heat shock at 42°C and remained nearly con-
stant during the 3-hours heat shock. However, a progres-
sively higher fraction of VP1LAC (up to 45% at 3 h)

occurred as inclusion bodies (data not shown). Neverthe-
less, this compositional evolution was parallel to a struc-
tural evolution (see Figure 1) since polypeptides
embedded in inclusion bodies undergo a continuous for-
mation of extended, intermolecular β-sheet structure. This
was deduced from the evolution of the bands approxi-
mately 1627 cm-1 and 1692 cm-1 relative to that at 1652
cm-1. On the other hand, recombinant β-galactosidase
only represents around 3% of the protein species found in
insoluble fraction, while VP1LAC accounted for 90% of
the inclusion body material. In fact, inclusion bodies were
enriched with VP1LAC species, especially in those native-
like forms (see Figure 1) peaking approximately at 1638–
1640 cm-1.

The formation of β-galactosidase thermal aggregates and
VP1LAC inclusion bodies was explored in absence of
either the main cytoplasmatic chaperones DnaK (JGT20)
and GroEL (BB4565). As expected (see Table 1), the solu-
ble β-galactosidase was more active than the soluble engi-
neered version VP1LAC. Despite this fact, protein
aggregated as inclusion bodies was much more active
(from 2 to 8 fold) than that occurring in thermal aggre-
gates (up to 10 fold in wild type cells), indicating a higher
occurrence of properly folded protein. While, GroEL
seems to be fairly relevant, this event it is clearly depend-
ing on DnaK, as in JGT20, insoluble VP1LAC is less active
than insoluble β-galactosidase.
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Conclusion
Thermal denaturation of β-galactosidase results in the for-
mation of heterogeneous aggregates that are rather stable
in composition during the heat shock stress. On the con-
trary, protein deposition as inclusion bodies renders
homogeneous but strongly evolving structures. In this
context, the specific activity of enzyme-based inclusion
bodies is much higher than in the equivalent thermal
aggregates, by a mechanism that might be controlled by
the chaperone DnaK. Protein deposition as inclusion bod-
ies is then a cell driven complex process through which
misfolded protein forms but also functionally competent
polypeptides are efficiently packaged.
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FTIR of β-galactosidase aggregates (left) and VP1LAC inclusion bodies (right) formed during 1 hour (continuous), 3 hours (dot-ted) or 5 hours (dashed)Figure 1
FTIR of β-galactosidase aggregates (left) and VP1LAC inclusion bodies (right) formed during 1 hour (continuous), 3 hours (dot-
ted) or 5 hours (dashed).
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Table 1: Specific activity (in U/ng) of β-galactosidase and its derivative VP1LAC produced in different strains, in the soluble and 
insoluble fractions.

Strain Solublefraction Insolublefraction

MC4100/pJCO46 628.2 ± 40.5 6.3 ± 0,3
MC4100/pJVP1LAC 234.1 ± 52.9 65.2 ± 19,4
BB4565/pJCO46 689.7 ± 164.9 63.6 ± 2,2
BB4565/pJVP1LAC 230.2 ± 25.7 129.6 ± 45,9
JGT20/pJCO46 888.9 ± 179.3 175.2 ± 34,9
JGT20/pJVP1LAC 12.5 ± 3.8 10.3 ± 6.3
Page 2 of 2
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15529165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14651640
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8861998

	Background
	Results
	Conclusion
	Acknowledgements
	References

